基于领航跟随的编队控制方法简洁实用,但其在不同自主式水下航行器(Autonomous Undenuater Vehicle, AUV)平台上的控制效果缺乏对比。本文针对500 kg的“海翔500”AUV与 5000 kg的“NPS”AUV开展AUV编队航行仿真,对比分析了基于领航跟随编队控制方法下的2型AUV的队形距离偏差、队形角度偏差。500 kg的“海翔500”AUV与 5000 kg的“NPS”AUV在路径跟随上的航行能力接近,航行稳定后偏离设定路径的法向距离小于1 m。基于领航跟随的编队控制方法对2型AUV的编队均有较好的控制效果,在稳定直航段跟随者与领航者的距离偏差保持在7~8 m,角度偏差保持在3°~5°。但在切换点处由于队形相对位置的约束,对编队内外侧AUV的加减速性能有一定要求,“NPS” AUV在直角拐弯处的距离偏差较“海翔500”AUV增大50%左右。
The leader-follower formation control method is concise and practical, but its control effectiveness on different AUV platforms lacks comparison. This article uses a 500 kg level "HX500" AUV and a 5000 kg level "NPS" AUV to conduct AUV formation navigation simulation, and compares and analyzes the formation distance deviation and formation angle deviation of two types of AUVs based on leader-follower formation control method. The results indicate that the navigation ability of the "HX500" AUV and the "NPS" AUV on path following is similar, and the normal distance from the path after stable navigation is less than 1 m. The formation control method performs well in formation control of two types of AUVs. After stable navigation, the distance deviation between the follower and the leader is maintained at 7~8 m, and the angle deviation is maintained at 3°~5°. However, due to the constraints of the relative position of the formation at the switching point, there are certain requirements for the acceleration and deceleration performance of the inner and outer AUVs of the formation. At the corner of the path, NPS AUVs with larger weight and size have a distance deviation of about 50% greater than the "HX500" AUVs.
2024,46(11): 98-102 收稿日期:2023-06-06
DOI:10.3404/j.issn.1672-7649.2024.11.018
分类号:U661
作者简介:郑鹏(1994-),男,硕士,工程师,研究方向为动力学与控制
参考文献:
[1] EDWARDS D B, BEAN T, ODELL D, et al. A leader-follower lgorithm for multiple AUV formations[C]// Autonomous Underwater Vehicles, Sebasco, Maine, The United State, 2004. IEEE, 2004: 501-509.
[2] CALADO P, SOUSA J. Leader-follower control of underwater vehicles over acoustic communications[C]//OCEANS, Santander, Spain, 2011. IEEE, 2011: 501-506P.
[3] 姜成林, 徐会希. 面向复杂地形海洋勘探的Multi-AUV编队协同控制策略[J]. 舰船科学技术, 2021, 43(3): 93-100.
JIANG Chenglin, XU Huixi. Multi-autonomous underwater vehicles formation control and strategy for complex terrain oceanographic exploration[J]. Ship Science and Technology, 2021, 43(3): 93-100.
[4] 袁健, 唐功友. 采用一致性算法与虚拟结构的多自主水下航行器编队控制[J]. 智能系统学报, 2011, 6(3): 248-253.
YUAN Jian, TANG Gongyou. Formation control of autonomous underwater vehicles with consensus algorithms and virtual structure[J]. CAAI Transactions on Intelligent Systems, 2011, 6(3): 248-253.
[5] 潘无为, 姜大鹏, 庞永杰, 等. 人工势场和虚拟结构相结合的多水下机器人编队控制[J]. 兵工学报. 2017(2): 326-334.
PAN Wuwei, JIANG Dapeng, PANG Yongjie. et al. A multi-AUV formation algorithm combining artificial potential field and virtual structure[J]. ACTA Armamentarii, 2017(2): 326-334.
[6] 王银涛, 严卫生. 多自主水下航行器系统一致性编队跟踪控制[J]. 控制理论与应用. 2013, 30(3): 379-384.
WANG Yintao,YAN Weisheng. Consensus formation tracking control of multiple autonomous underwater vehicle systems[J]. Control Theory & Applications, 2013, 30(3): 379-384.
[7] 何斌. 多AUV编队控制与协同搜索技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.
[8] GHABCHELLO R. Coordinated path following of multiple autonomous vehicles[D]. Lisbon: Ph. D Thesis of Technical University of Lisbon, 2007: 23-64.
[9] 边信黔, 牟春晖, 严浙平. 多UUV沿多条给定路径运动的协调编队控制[J]. 哈尔滨工业大学学报. 2013, 45(1): 106-111.
BIAN Xinqian, MU ChunLui, YAN Zheping. Coordinated control for multi-UUV formation motion on a set of given paths[J]. Journal of Harbin Institute of Technology, 2013, 45(1): 106-111.
[10] ZHANG C, ZHANG H, ZHANG Y, et al. Parameter identification of hybrid-driven underwater glider based on differential evolution algorithm[C]// International Conference on Artificial Intelligence and Electromechanical Automation. IEEE, 2021.
[11] HEALEY A J, LIENARD D. Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles[J]. IEEE Journal of Oceanic Engineering, 1993, 18(3): 327-339.