声场为当前水声探测中最重要的、可用的物理场。水声换能器作为声波产生、发射和接收的基本装置,是水声技术发展关注的重点。其中,尺寸小、重量轻、低频、宽带、大功率、抗振动为水声换能器研究和发展的重要方向。为提高复合棒换能器的声学性能,以锆钛酸铅(PZT-4)压电陶瓷和铌镁酸铅-钛酸铅(PMN-PT)压电单晶材料分别作为换能器的驱动元件,通过有限元仿真计算、设计加工及试验验证,进行了宽频带复合棒压电单晶换能器的研究,最后对2种换能器进行对比分析,进一步研究宽频带压电单晶换能器在低频、宽带、收发、加速度灵敏度等特性上的优势。研究结果表明,宽频带PMN-PT压电单晶换能器与相似规格的PZT-4压电陶瓷换能器相比,最大发送电压响应高3.4 dB,发送电压响应–6 dB带宽向两端拓展了5.5 kHz;最大接收灵敏度高4 dB,自由场接收灵敏度–6 dB带宽向两端拓展了8.1 kHz;加速度灵敏度更低,抗振动性能更好。
Sound field is the most important and available physical field in underwater acoustic detection. As a basic device for generating, transmitting and receiving sound waves, underwater acoustic transducer is the focus of underwater acoustic technology development. Small size, light weight, low frequency, broadband, high power and anti-vibration are important directions for the research and development of underwater acoustic transducers. In order to improve the acoustic performance of the composite rod transducer, PZT-4 piezoelectric ceramic and PMN-PT piezoelectric single crystal materials are used as the driving elements of the transducer respectively. Finally, the two kinds of transducers are compared and analyzed to further study the advantages of broadband piezoelectric single crystal transducers in low frequency, broadband, transceiver, acceleration sensitivity and other characteristics. The results show that the maximum transmission voltage response of the broadband PMN-PT piezoelectric single crystal transducer is 3.4 dB higher than that of the PZT-4 piezoelectric ceramic transducer of similar specifications, and the transmission voltage response –6 dB bandwidth extends to both ends by 5.5 kHz. The maximum receiving sensitivity is 4 dB higher, and the free field receiving sensitivity –6 dB bandwidth extends to 8.1 kHz at both ends. The acceleration sensitivity is lower and the anti-vibration performance is better.
2024,46(11): 139-144 收稿日期:2023-05-26
DOI:10.3404/j.issn.1672-7649.2024.11.025
分类号:U666.74
作者简介:刘一鸣(1995-),男,硕士,工程师,研究方向为水声换能器与声系统
参考文献:
[1] 李晓娟, 李全禄, 谢妙霞, 等. 国内外压电陶瓷的新进展及新应用[J]. 硅酸盐学报, 2006, 25(4): 101-107.
[2] 徐家跃. 单晶材料的新发展及其对生长技术的挑战[J]. 人工晶体学报, 2003, 32(5): 469-475.
[3] JUN K, KENJI U, SHOICHIRO N. Phase transitions in the Pb (Zn1/3Nb2/3)O3-PbTiO3 system[J]. Ferroelectrics, 1981, 37(1): 5979-5982.
[4] 许桂生, 罗豪甦, 王评初, 等. 新型弛豫型铁电单晶PMNT的铁电与压电性能[J]. 科学通报, 1999(20): 2157-2161.
[5] 李国荣, 罗豪甦, 殷庆瑞. PMN-PT驰豫铁电单晶及其超声换能器性能研究[J]. 无机材料学报, 2001(6): 1077-1083.
[6] 吴亮, 史翔, 杜慧玲. 压电单晶扬声器低频性能的优化及实验研究[J]. 压电与声光, 2021, 43(4): 533-537.
[7] 罗豪甦, 冯祖勇. 新型压电单晶PMNT在高性能传感/驱动器中的应用[C]//中国土木工程学会. 科技、工程与经济社会协调发展——中国科协第五届青年学术年会论文集. 中国科学技术出版社, 2004: 40-41.
[8] TRESSLER J F, HOWARTH T R. Cymbal drivers utilizing relaxor-based ferroelectric single crystal materials[C]//12th IEEE International Symposium on Applications of Ferroelectrics (ISAF 2000), vol. 2. 2000: 561-564.
[9] JAMES F T, THOMAS R H, DEHUA HUANG. A comparison of the underwater acoustic performance of single crystal vs. piezoelectric ceramic based cymbal projectors[C]//Oceans 2003 MTS/IEEE Conference (OCEANS 2003), 2003(5): 2372-2379.
[10] COCHRAN S, PARKER M, MARIN-FRANCH P. Ultrabroadband single crystal composite transducers for underwater ultrasound[C]//Ultrasonics Symposium, 2005 IEEE Conference, 2005: 231-234.
[11] MARK B M, HAROLD C R, JAMES M P. Single-crystal lead magnesium niobate-lead titanate (PMN-PT) as a broadband high power transduction material[J]. J. Acoust. Soc. Am. 2007, 12 (5): 2591-2599.
[12] CHUNG Myung-jin, YEE Yang-hee, CHA Dong-hyuk. Development of auto focus actuator for camera phone by applying piezoelectric single crystal[P]. International Symposium on Optomechatronic Technologies, 2007.
[13] TWERDOWSKI E, PLUTA M, WANNEMACHER R, et al. Comparative evaluation of ultrasonic lenses and electric point contacts for acoustic flux imaging in piezoelectric single crystals[P]. SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, 2008.
[14] KEVIN A S, PAUL W R, WESLEY S H, et al. Advanced piezoelectric single crystal based transducers for naval sonar applications[P]. SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, 2006.
[15] 孟洪, 俞宏沛, 罗豪甦, 等. PMNT及其在水声换能器中的应用[J]. 声学与电子工程, 2004(1): 22-26.
[16] 郑信雄, 赵荣荣, 刘振君, 等. 压电单晶Ⅲ型弯张换能器研究[C]//2016中国西部声学学术交流会论文集, 2016: 559-562.
[17] 王春雷, 李吉超, 赵明磊. 压电铁电物理[M]. 北京: 科学出版社, 2009.
[18] 徐家跃. 新型弛豫铁电单晶及其超声医学应用[J]. 硅酸盐学报, 2003(11): 1091-1095.
[19] 涂其捷, 滕超, 丁俊文, 等. 压电单晶换能器及其温度实验研究[J]. 电声技术, 2020, 44(5): 80-82.
[20] 季博成, 蓝宇, 周天放. 压电单晶双激励宽带纵向换能器[J]. 哈尔滨工程大学学报, 2018, 39(9): 1472-1477.
[21] 罗豪甦, 徐海清, 王评初, 等. 新型压电单晶PMNT的生长和性能研究[J]. 哈尔滨理工大学学报, 2002(6): 98-99.