为了使换能器得到更大的工作带宽以及降低发射电压响应起伏,提出一种空腔式多激励纵振水声换能器,通过有限元分析,研究换能器在不同阶段的振动模态以及在空气和水中的谐响应特征,实现水声换能器的带宽发射。通过对各个部件的材料、尺寸优化后,得到换能器的工作带宽10~31.5 kHz,发射电压响应起伏5.1 dB以及发射电压响应幅值127 dB。根据优化后的参数加工制作了纵振水声换能器样机,并在消声水池进行实物测试,得到可用工作带宽为11.5~30.5 kHz,发射电压响应起伏在±3 dB,平均幅值126 dB。试验结果和计算机仿真结果基本吻合,符合预期要求。
In order to obtain a larger operating bandwidth and reduce the fluctuation of transmitting voltage response, a cavity type longitudinal vibration acoustic transducer is proposed. Through finite element analysis, the vibration modes of the transducer at different stages and the harmonic response characteristics in air and water are studied to realize the bandwidth emission of the acoustic transducer. By optimizing the material and size of each component, the working bandwidth of the transducer is 10~31.5 kHz, the voltage response fluctuation is 5.1 dB and the voltage response amplitude is 127 dB. According to the optimized parameters, a prototype of longitudinal acoustic transducer was manufactured and tested in the anechoic tank. The available bandwidth was 11.5~30.5 kHz, the response voltage fluctuated in ±3 dB, and the average amplitude was 126 dB. The experimental results are in good agreement with the computer simulation results and meet the expected requirements.
2024,46(11): 145-150 收稿日期:2023-07-28
DOI:10.3404/j.issn.1672-7649.2024.11.026
分类号:TB556
基金项目:江苏省重点研发计划资助项目(BE2019002-2);连云港521科研资助项目(LGY06521202217)
作者简介:陈劲松(1977-),男,博士,教授,研究方向为海洋工程
参考文献:
[1] 张庆国, 黄其培, 李兴武, 等. 宽带组合式水声换能器设计研制及应用[J]. 压电与声光, 2020, 42(2): 223-229.
[2] 唐平, 鲜晓军, 刘振华, 等. 高频球面宽波束水声换能器研究[J]. 压电与声光, 2019, 41(5): 647-649.
[3] 莫喜平. 我国水声换能器技术研究进展与发展机遇[J]. 中国科学院院刊, 2019, 34(3): 272-282.
[4] 杜海波, 秦雷, 仲超, 等. 基于1-1-3型压电复合材料水声换能器性能分析[J]. 西北工业大学学报, 2019, 37(2): 386-392.
[5] 纪京召, 黄勇军. 水声换能器灵敏度混响法校准技术研究[J]. 声学与电子工程, 2019(1): 47-49.
[6] 邓皓元. 纵振宽带水声换能器的仿真及优化[D]. 武汉: 华中科技大学, 2019.
[7] 刘望生, 俞宏沛, 周利生. 纵振水声换能器发送电压响应频带展宽补偿[J]. 压电与声光, 2008(5): 577-578.
[8] 滕舵, 陈航, 张允孟. 宽带纵振Tonpilz型水声换能器的优化设计[J]. 声学技术, 2005(1): 58-60.