为了开展气垫船的铝合金艇体结构在火灾高温作用场下的甲板结构热力耦合响应研究,基于大涡模拟方法FDS (Fire Dynamic Solution)构建艇体火灾场景模型,获取热释放功率不同的油池火灾下的高温作用场特性,获得结构表面的单位热通量数据并通过自编温度载荷映射程序并采用顺序热力耦合计算方法开展火灾场景下铝合金结构热力耦合响应的研究,分析火灾下艇体的甲板结构的失效模式与舱段的极限承载能力变化,为后续船体的铝合金结构轻量化设计与抗火设计方案提供技术依据。
To investigate the thermal-structural coupling response of the deck structure of an air-cushion vehicle under fire and high-temperature conditions, a fire scenario model of the vehicle was constructed based on the Large Eddy Simulation method FDS (Fire Dynamic Solution). The high-temperature field characteristics of oil pool fires with different heat release rates were obtained. The thermal-structural coupling response of the ship structure under fire scenarios was studied by using the unit heat flux data of the structure surface with a self-developed temperature load mapping program and a sequential thermal-structural coupling calculation method. Failure modes of the deck structure and changes in the ultimate bearing capacity of the compartments of the air-cushion vehicle were analyzed. The results provide technical support for the subsequent light-weight design and fire-resistant design schemes of the aluminum alloy structure of the hull.
2024,46(12): 1-7 收稿日期:2023-04-12
DOI:10.3404/j.issn.1672-7649.2024.12.001
分类号:U698.4
基金项目:黑龙江省自然科学基金资助项目(LH2020E078);国家自然科学基金资助项目(52171305, 52101305)
参考文献:
[1] 崔鲁宁, 浦金云, 吴晓伟. 船舶舱室火灾危险性评估方法研究[J]. 中国安全科学学报, 2008(11): 147-152.
[2] YU D M, FENG C G. Hazard analysis on one-room building fires[J]. Journal of Thermal Science, 1998(4): 272-277.
[3] 李陈峰, 张昆, 魏子阳, 等. 舱室火灾下船体结构剩余强度分析[J]. 哈尔滨工程大学学报, 2021, 42(5): 610-617.
[4] 付丹文, 王德禹. 火灾中集装箱船剩余极限强度研究[J]. 海洋工程, 2018, 36(1): 83-90.
[5] ZHANG L M, XUE H X, TANG W Y. Residual ultimate strength analysis of stiffened panels exposed to fire [C]//Proceedings of the 7th International Conference on Marine Structures. Croatia: Taylor & Francis Group, 2019: 107-115.
[6] MANCO M R, VAZ M A, CYRINO J C R, et al. Behavior of stiffened panels exposed to fire [C]// Proceedings of the 4th International Conference on Marine Structures. Helsinki: Taylor & Francis Group, 2013: 101-108.
[7] SOARES C G, TEIXEIRA A P. Strength of plates subjected to localised heat loads[J]. Journal of Constructional Steel Research, 2000, 53(3): 335-358.
[8] 刘云山, 薛鸿祥, 周佳, 等. 火灾场景下船舶舱室结构动态热力响应分析研究[J]. 中国造船, 2018, 59(4): 161-169.
[9] 郝军凯. 船舶甲板板架结构在火灾高温环境下的热力响应与极限强度研究[D]. 上海: 上海交通大学, 2020.
[10] 郝军凯, 薛鸿祥, 袁昱超, 等. 船舶舱室油池火灾下甲板板架剩余极限强度分析[J]. 中国造船, 2020, 61(1): 131-140.
[11] FU C L, LIU N S, LU X Y, et al. Numerical simulation of the Interaction between pool fire behind an obstruction and water spray[J]. Fire Safety Science, 2003, 12(3): 121-129.
[12] WHITE D A, BEYLER C L, SCHEFFEY J L, et al. Modeling the impact of post-flashover shipboard fires on adjacent spaces[J]. Journal of Fire Protection Engineering, 2000, 10(4): 2-18.
[13] 付毅刚, 董海荣. 基于FDS的基础模型火灾模拟研究[J]. 建筑技术, 2019, 50(3): 369-371.
[14] FENG T H, LIU B Y, ZHANG H S. Experimental study on fire in naval cabin under water spray system[J]. Fire Technology and Product Information, 2018, 31(9): 15-18.
[15] ANDERSSON C, SATERBORN D. Smoke control systems aboard-a risk analysis of smoke control systems in accommodation spaces on passenger on passenger ships[J]. Lund University, 2002: 1-10.
[16] WIKMAN J. Ship fire safety engineering[J]. Regulations, 1995: 1-149.