本文基于疲劳可靠性的基本原理,在疲劳寿命对数正态分布的假设下,根据t分布理论,结合船舶及海洋工程一般构件具有95%置信度和97.72%可靠度下的P-S-N曲线的基本要求,推算出了具有95%置信度和误差限度5%内的疲劳试件个数与允许的最大变异系数数值对应关系,以此作为成组法疲劳试验的最少试件个数的判据开展典型节点的疲劳试验,得到具有95%置信度的百位估计值$ {N}_{p} $;并通过线性相关系数r判断对数疲劳应力Y=$ {\mathrm{log}}S $与X=$ {{\mathrm{log}}}{N}_{p} $之间线性相关的程度,采用最小二乘法对对数疲劳寿命$ {{\mathrm{lg}}}{N}_{p} $和对数疲劳应力$ {{\mathrm{lg}}S} $线性拟合,得到具有95%置信度的P-S-N曲线,并与IIW规范中相应的曲线进行对比分析,验证了本文试验方法的可行性和可靠性。
Based on the basic principle of fatigue reliability, under the assumption of lognormal distribution of fatigue life, according to the t distribution theory, and in combination with the basic requirements of P-S-N curve for ships and marine engineering general components with 95% confidence and 97.72% reliability, the corresponding relationship between the number of fatigue specimens with 95% confidence and within 5% of the error limit and the allowable maximum variation coefficient value is calculated, The fatigue test of typical nodes is carried out based on this criterion as the minimum number of test pieces in the group method fatigue test, and the Np with 95% confidence is obtained. The degree of linear correlation between fatigue stress logS and fatigue life logNp judged by the linear correlation coefficient r, and the fatigue life logNp and fatigue stress logS are linearly fitted by the least square method to obtain a P-S-N curve with 95% confidence, which is compared with the corresponding curve in the IIW , the results shows the method in this paper is feasibility and reliability.
2024,46(12): 8-12 收稿日期:2023-05-12
DOI:10.3404/j.issn.1672-7649.2024.12.002
分类号:O346.2
作者简介:张凡(1982-),女,硕士,高级工程师,研究方向为疲劳强度评估技术
参考文献:
[1] ABS. Guide for fatigue assessment offshore structures[M]. 2018.
[2] DNV. GL. Rules for classification ships[S]. 2018.
[3] HOBBACHER, A, IIW doc. XIII-1965-03 / XV-1127-03 Recommendations for fatigue design of welded joints and components[S]. 2005.
[4] 中国船级社. 船体结构疲劳强度指南[S]. 2021.
[5] Standard practice for conducting force controlled constant amplitude axial fatigue tests of metallic materials[S]. ASTM E466, 2015.
[6] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属材料轴向等幅低循环疲劳试验方法: GB/T 15248–2008[S]. 北京: 中国标准出版社, 2008.
[7] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属材料疲劳试验轴向应变控制方法: GB/T 26077–2010[S]. 北京: 中国标准出版社, 2010.
[8] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属材料疲劳试验数据统计方案与分析方法GB/T 24176–2009 [S]. 北京: 中国标准出版社, 2009.
[9] ISO12107. metallic material fatigue testing statistical planning and analysis of Data [S]. 2012.
[10] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属材料轴向加载疲劳试验方法HB 5287-2009 [S]. 北京: 中国标准出版社 2009.
[11] DONG P, HONG J K, OSAGE D A, et al. The master S–N curve method an implementation for fatigue evaluation of welded components in the ASME B&PV Code Section VIII, Division 2 And API 579-1/ASME FFS-1[M]. New York: WRC Bulletin, 2010.
[12] 高镇同, 熊骏江, 等. 疲劳可靠性[M]北京: 北京航空航天大学出版社, 2000.
[13] 胡毓仁, 李典庆, 陈伯真, 等. 船舶与海洋工程结构疲劳可靠性分析[M]哈尔滨: 哈尔滨工程大学出版社, 2010.
[14] 傅惠民, 刘成瑞. S-N曲线和P-S-N曲线小子样测试方法[J]. 机械强度, 2006, 28(4): 552-555.
FU Huimin, LIU Chengrui. Small sample testing method for S-N curve and P-S-N curve[J]. Mechanical strength, 2006, 28(4): 552-555.
[15] 吕箴, 姚卫星. 小样本疲劳寿命分析问题研究进展[J]. 力学与实践, 2008, 30(5): 9–14.
LV Zhen, YAO Weixing. Research progress on small sample fatigue life analysis [J] Mechanics and Practice, 2008, 30(5): 9–14.
[16] XIE L Y, LIU J Z, WU N X. Backwards statistical inference method for P-S-N curve fitting with small-sample experiment data[J]. International Journal of Fatigue, 2014, 63: 62-67.
[17] SHEMIZU S, TOSHA K, TSUCHIYA K. New data analysis of probabilistic stress-life(P-S-N) curve and its application for structural materials[J]. International Journal of Fatigue, 2010, 32: 565: 575.