为探究典型破片载荷作用下船用燃油柜毁伤效应,构建了破片侵彻燃油柜的数值仿真模型,分析了破片对燃油柜的侵彻物理过程,分析了破片在燃油中的空泡传递规律,通过线性回归方法得到了燃油柜前面板在不同角度下的最小穿透动能及极限穿透速度。探究了破片速度、入射角度以及燃油柜充液率对燃油柜毁伤效应的影响。结果表明,随着破片速度增加,燃油柜前后面板最大挠度增大,形成的空泡尺寸增大;随着破片入射角增大,燃油柜后面板挠度变小,燃油柜后面板最大挠度位置逐渐上移;燃油柜充液率以50%为分界线,在充液率50%以上时,燃油柜前后面板最大挠度变形区别不大,50%充液率在挠度变形以及破片速度变化有明显区别。
In order to explore the damage effect of marine fuel tank under typical fragment load, a numerical simulation model of fragment penetration into fuel tank was constructed, the physical process of fragment penetration into fuel tank was analyzed, and the law of cavitation transfer of fragment in fuel was analyzed. The minimum penetration kinetic energy and limit penetration velocity of the front panel of fuel tank at different angles were obtained by linear regression method. The effects of fragment velocity, incident angle and fuel tank filling rate on the damage effect of fuel tank are investigated. The results show that with the increase of fragment velocity, the maximum deflection of front and rear panels of fuel tank increases, and the cavitation size increases. With the increase of fracture angle, the deflection of fuel tank rear panel becomes smaller, and the maximum deflection position of fuel tank rear panel gradually moves upward. The fuel tank filling rate is 50% as the dividing line. When the filling rate is more than 50%, the maximum deflection deformation of the front and back panels of the fuel tank is not much different, and the 50% filling rate has a significant difference in the deflection deformation and fragmentation speed change.
2024,46(12): 30-38 收稿日期:2023-08-11
DOI:10.3404/j.issn.1672-7649.2024.12.006
分类号:U664.8
基金项目:国家自然科学基金资助项目(52201334)
作者简介:叶龙学(1995-),男,硕士,研究方向为舰船结构设计
参考文献:
[1] 易亮, 陈敏. 水面舰船目标毁伤效果评估指标研究[J]. 舰船科学技术, 2010, 32(7): 102-105+109.
YI Liang, CHEN Min. Study on criteria of damage effect assessment of surface warship[J]. Ship Science and Technology, 2010, 32(7): 102-105+109.
[2] 吴伟, 李典, 侯海量, 等. 舱壁组合结构抗高速破片侵彻性能研究[J]. 舰船科学技术, 2022, 44(16): 13-19.
WU Wei, LI Dian, HOU Hailiang, et al. Research on anti-penetration performance of composite bulkhead structure in high-speed fragments[J]. Ship Science and Technology, 2022, 44(16): 13-19.
[3] MOTT N F. Fragmentation of shell cases[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1947, 189(1018): 300–308.
[4] GURNEY R W. The initial velocities of fragments from bombs, shell, grenades[R]. Aberdeen: Ballistic Research Laboratory, 1943, 9(1): 1–16.
[5] TAYLOR G I. Analysis of the explosion of a long cylindrical bomb detonated at one end[M]. Cambridge: Cambridge University Press, 1963(30): 277–286.
[6] 武伟明. 战斗部破片分布规律的计算[J]. 弹箭与制导学报, 1991, 11(1): 69-76.
WU Weiming. Calculation of the distribution law of warhead fragments[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 1991, 11(1): 69-76.
[7] 李典, 侯海量, 朱锡, 等. 高速杆式弹侵彻下充液结构耗能机理数值分析[J]. 海军工程大学学报, 2018, 30(2): 60-65.
LI Dian, HOU Hailiang, ZHU Xi, et al. Numerical analysis of energy dissipation mechanism of liquid filled structures under high speed rod projectile penetration[J]. Journal of Naval University of Engineering, 2018, 30(2): 60-65.
[8] 韩璐, 韩庆, 杨爽. 多破片高速冲击下飞机油箱水锤效应数值模拟[J]. 爆炸与冲击, 2018, 38(3): 473-484.
HAN Lu, HAM Qing, YANG Shuang. Numerical simulation of water hammer effect in aircraft fuel tanks under high-speed impact of multiple fragments[J]. Explosion and Shock Waves, 2018, 38(3): 473-484.
[9] 蓝肖颖, 李向东, 周兰伟, 等. 双破片撞击充液容器时液体内压力分布研究[J]. 振动与冲击, 2019, 38(19): 191-197.
LAN Xiaoying, LI Xiangdong, ZHOU Lanwei, et al. Study on the pressure distribution inside a liquid filled container impacted by double fragments[J]. Journal of Vibration and Shock, 2019, 38(19): 191-197.
[10] NISHIDA M, TANAKA K. Experimental study of perforation and cracking of water-filled aluminum tubes impacted by steel spheres[J]. International Journal of Impact Engineering, 2006, 32(12): 2000-2016.
[11] REN P, ZHOU J, TIAN A, et al. Experimental investigation on dynamic failure of water-filled vessel subjected to projectile impact[J]. International Journal of Impact Engineering, 2018, 117(7): 153-163.
[12] VARAS D, ZAERA R, LOPEZ-PUENTE J. Experimental study of CFRP fluid-filled tubes subjected to high-velocity impact[J]. Composite Structures, 2011, 93(10): 2598–2609.
[13] 陈照峰, 刘国繁, 高伟, 等. 高速子弹穿透充液油箱的数值模拟[J]. 航空计算技术, 2014, 44(1): 98-101.
CHEN Zhaofeng, LIU Guofan, GAO Wei, et al. Numerical simulation of high-speed bullets penetrating a liquid filled fuel tank[J]. Aeronautical Computing Technique, 2014, 44(1): 98-101.
[14] 陈亮, 宋笔锋, 裴扬, 等. 威胁打击方向对飞机油箱液压冲击易损性的影响分析[J]. 机械强度, 2012, 34(6): 807-811.
CHEN Liang, SONG Bifeng, PEI Yang, et al. Analysis of the impact of threat strike direction on the vulnerability of aircraft fuel tank hydraulic shock[J]. Journal of Mechanical Strength, 2012, 34(6): 807-811.
[15] 杨砚世, 肖志华, 李向东. 破片撞击燃料箱时水锤效应的数值仿真研究[J]. 爆破器材, 2014, 43(4): 26-31.
YANG Yanshi, XIAO Zhihua, LI Xiangdong. Numerical simulation study on water hammer effect of fragments impacting on fuel tanks[J]. Explosive Materials, 2014, 43(4): 26-31.
[16] 潘海军, 叶晓明, 李本钶, 等. 基于耦合欧拉-拉格朗日方法的舰用日用燃油柜抗冲击性能分析[J]. 中国舰船研究, 2020, 15(S1): 113-120.
PAN Haijun, YE Xiaoming, LI Benke, et al. Analysis of impact resistance performance of marine daily fuel tanks based on coupled euler lagrangian method[J]. Chinese Journal of Ship Research, 2020, 15(S1): 113-120.
[17] 徐双喜, 吴卫国, 李晓彬, 等. 舰船舷侧防护液舱舱壁对爆炸破片的防御作用[J]. 爆炸与冲击, 2010, 30(4): 395-400.
XU Shuangxi, WU Weiguo, LI Xiaobin. The defense effect of ship side protective liquid tank bulkheads on explosive fragments[J]. Explosion and Shock Waves, 2010, 30(4): 395-400.
[18] BAIN JR L W, REISINGER M J. The gift code user manual. Volume I. introduction and input requirements[R]. Army Ballistic Research lab Aberdeen Proving Ground MD, 1975, 7(1): 1–202.
[19] WILT T, CHOWDHURY A, COX P A. Response of reinforced concrete structures to aircraft crash impact[J]. Prepared for US Nuclear Regulatory Commission Contract, 1995, 60(471): 81–89.