为得到适用于新型轮缘驱动泵喷推进器的螺旋桨,在传统泵喷推进器螺旋桨的基础上进行性能优化方法研究十分必要。利用CFD数值模拟方法对推进器进行水动力仿真,分别对比3个不同的螺旋桨孔径比和3种桨叶厚度分布方案对推进器敞水性能的影响。对比结果发现小孔径比对推进器敞水性能更为有利,其中0.1孔径比推进器比0.3孔径比推进器的敞水效率最大提升了3.25%。厚度反置导致轮缘驱动螺旋桨高半径处压力分布不均匀,扭矩大幅提升,敞水效率大幅降低。轮缘驱动螺旋桨的厚度越小,扭矩越低,敞水效率越高,其中方案C桨的扭矩比方案A最大降低了21.74%,敞水效率最大提升了12.9%。
In order to obtain a propeller suitable for the new rim-driven pump jet propulsor, it is necessary to study the performance optimization method on the basis of the traditional pump jet propulsor. The hydrodynamic simulation of the thruster was simulated by CFD numerical simulation method, and the effects of three different propeller aperture ratios and three blade thickness distribution schemes on the open water performance of the thruster were compared. The comparison results show that the small aperture ratio is more favorable to the open water performance of the propeller, and the open water efficiency of the 0.1 aperture ratio propeller is increased by 3.25% compared to the 0.3 aperture ratio propeller. The thickness reversal leads to uneven pressure distribution at the high radius of the rim-driven propeller, greatly increasing torque and greatly reducing the efficiency of open water. The smaller the thickness of the rim drive propeller, the lower the torque, and the higher the open water efficiency, among which the torque of the scheme C propeller is reduced by 21.74% compared with scheme A, and the open water efficiency is increased by 12.9%.
2024,46(12): 46-52 收稿日期:2023-08-08
DOI:10.3404/j.issn.1672-7649.2024.12.008
分类号:U661.31+3
基金项目:国家重点研发计划子课题资助项目(2020YFC1521704);天津市科技计划资助项目(22YDTPJC00470)
作者简介:张敏革(1980-),女,博士,高级工程师,研究方向为计算流体力学、水下推进器
参考文献:
[1] 曹奇宏, 张冠军. 泵喷推进器的流激声振特性研究[J]. 武汉理工大学学报(交通科学与工程版), 2023, 47(3): 460–464.
[2] 王雨楠. 桨叶参数对轮缘推进器水动力性能影响分析[D]. 大连: 大连理工大学, 2022.
[3] 王涛, 周连第. 泵喷推进器内间隙流与主流相互作用的数值模和机理研究[C]//2004 年船舶水动力学学术会议论文集, 武汉, 2004: 215–226.
[4] 胡斌. 集成电机推进器总体设计技术研究[D]. 西安: 西北工业大学, 2013.
[5] LI Han, HUANG Qiaogao, PAN Guang, et al. The transient prediction of a pre–swirl stator pump–jet propulsor and a comparative study of hybrid RANS/LES simulations on the wake vortices[J]. Ocean Engineering, 2020, 203: 107224
[6] 武建国, 武天龙. 泵喷推进器扭矩自平衡优化分析[J]. 舰船科学技术, 2022, 44(12): 10–15.
WU Jianguo, WU Tianlong, Torque self–balancing optimization analysis of pump – jet propeller [J]. Ship Science and Technology, 2022, 44(12): 10–15.
[7] YAKOVLEV A Y, SOKOLOV M A, MARINICH N V. Numerical design and experimental verification of a rim–driven thruster[C]//Proceedings of second international symposium on marine propulsors, 2011: 396–403.
[8] 杨蕾, 周军伟, 闫文辉, 等. 轮缘推进器反厚度规律桨叶的翼型对比分析[J]. 中国造船, 2022, 63(1): 113-125.
[9] LIU B, VANIERSCHOT M. Numerical study of the hydrodynamic characteristics comparison between a ducted propeller and a rim–driven thruster[J]. Applied Sciences, 2021, 11(11): 4919.
[10] SHEN Y, HU P, JIN S, et al. Design of novel shaftless pump–jet propulsor for multi–purpose long–range and high–speed autonomous underwater vehicle[J]. IEEE Transactions on Magnetics, 2016, 52(7): 1-4.
[11] OOSTERVELD M W C. Wake adapted ducted propellers[R]. Tech. Rep. Delft University of Technology, Delft, 1970.