自主式水下航行器(Autonomous Underwater Vehicle,AUV)螺旋桨的运转通常是在非均匀流场中,其中以AUV航行时产生的尾部伴流为主。为了分析尾部伴流对螺旋桨水动力及噪声的影响,首先利用P 4119螺旋桨验证双向流固耦合数值模拟的可行性、准确性,其次建立AUV与B型图谱桨耦合模型,对比2种工况下螺旋桨动力性能与无空化噪声分布情况。结果表明,在AUV尾部不均匀的来流影响下,螺旋桨所需提供的推力和转矩有所提高,此增幅在最高时分别可以达到83.77%和50.50%;相较于1倍叶频时伴流对螺旋桨噪声的微弱影响,2倍和3倍叶频时螺旋桨噪声在各个监测点的声压级相较均匀来流衰减了20~50 dB,并且导致2倍叶频时螺旋桨噪声的分布呈现无规则形。
The operating conditions of AUV propeller are usually in non-uniform flow, which is mainly caused by stern companion flow during AUV sailing. Non-uniform flow in order to analysis influence on propeller hydrodynamic and noise, the P 4119 propeller was used to verify the feasibility and accuracy of the two-way fluid-structure coupling numerical simulation. Secondly, the AUV and B-type propeller coupling model was established to compare the propeller dynamic performance and no cavitation noise distribution under two working conditions. The results show under the influence of non-uniform incoming flow from AUV stern, the thrust and torque required by the propeller are improved, and the increase can reach 83.77% and 50.50% respectively at the highest point. Compared with the weak influence of the accompanying flow on the propeller noise at blade passing frequency, the sound pressure level of the propeller noise at each monitoring point at two and three times of blade passing frequency is attenuated by 20~50 dB compared with the uniform flow, and the distribution of propeller noise at two times of blade passing frequency presents an irregularity.
2024,46(12): 90-96 收稿日期:2023-08-28
DOI:10.3404/j.issn.1672-7649.2024.12.016
分类号:U664.33
基金项目:浙江省自然科学基金资助项目(LTGG23E090002)
作者简介:姜长乐(1999-),男,硕士,研究方向为水下机器人结构设计与优化
参考文献:
[1] 谈宇航, 彭伟才. 弹性螺旋桨流固耦合振动特性分析[J]. 中国舰船研究, 2020, 15(3): 102-110.
TAN Yuhang, PENG Weicai. Analysis on the fluid-structure interaction vibration characteristics of the elastic propeller[J]. Chinese Journal of Ship Research, 2020, 15(3): 102-110.
[2] BAI Y, WU D. Study on fatigue characteristics of axial-flow pump based on two-way fluid–structure coupling[J]. Energies, 2022, 15(23): 8965.
[3] HAN S, WANG P, JIN Z, et al. Structural design of the composite blades for a marine ducted propeller based on a two-way fluid-structure interaction method[J]. Ocean Engineering, 2022, 259: 111872.
[4] KRISHNA V R, SANAKA S P, PARDHASARADHI N, et al. Hydro-elastic computational analysis of a marine propeller using two-way fluid structure interaction[J]. Journal of Ocean Engineering and Science, 2022, 7(3): 280-291.
[5] RAMAKRISHNA S, AJAY G. Fluid-structure interaction studies on marine propeller[J]. Journal of Computational Applied Mechanics, University of Tehran, 2019, 50(2): 381-386.
[6] 杨一帆, 张吉祥, 黄振华. 基于流固耦合的离心力对螺旋桨性能影响[J]. 船电技术, 2022, 42(5): 32-36+43.
[7] 冀楠, 钱志鹏, 舒麟棹, 等. 基于流固耦合的螺旋桨数值模拟和尺度效应分析[J]. 水动力学的研究与进展A辑, 2022, 37(2): 190-198.
JI Nan, QIAN Zhipeng, SHU Linshuo, et al. Numerical simulation of propeller and scale effect analysis based on fluid-structure interaction[J]. Chinese Journal of Hydrodynamics, 2022, 37(2): 190-198.
[8] 刘世伟, 曹吉胤, 刘海云, 等. 船舶尾部伴流对螺旋桨应力变形与振动的分析[J]. 舰船科学技术, 2022, 44(6): 54-59.
LIU Shiwei, CAO Jiyi, LIU Haiyun, et al. Analysis of stress, deformation and vibration of propeller caused by wake[J]. Ship Science and Technology, 2022, 44(6): 54-59.
[9] 詹志文, 张凌新, 邓见, 等. DTMB 4119螺旋桨噪声特性的数值模拟[J]. 浙江大学学报(工学版), 2021, 55(4): 767-774.
[10] 李高强, 欧阳武, 聂远哲. 基于大涡模拟的轮缘侧推器和常规侧推器非空泡噪声对比分析[J]. 中国造船, 2023, 64(1): 118-130.
LI Gaoqiang, OU Yangwu, NIE Yuan-zhe. Based on large eddy simulation of wheel rim thruster and conventional propeller cavitation noise analysis[J]. Shipbuilding of China, 2023, 64(1): 118-130.
[11] 曾赛, 杜选民, 范威. 水下对转桨非空化线谱噪声分析与数值研究[J]. 兵工学报, 2015, 36(6): 1052-1060.
[12] EBRAHIMI A, SEIF M S, NOURI-BORUJERDI A. Hydrodynamic and acoustic performance analysis of marine propellers by combination of panel method and FW-H equations[J]. Mathematical and Computational Applications, 2019, 24(3): 81.
[13] SCHMUCKER H, FLEMMING F, COULSON S. Two-way coupled fluid structure interaction simulation of a propeller turbine[J]. International Journal of Fluid Machinery and Systems, 2010, 3(4): 342-351.
[14] HAN S, LEE H, SONG M C, et al. Investigation of hydro-elastic performance of marine propellers using fluid-structure interaction analysis[C]//ASME International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015, 57465: V07AT09A038.
[15] 姜彭, 张超, 张宇. 基于STAR-CCM+的螺旋桨水动力性能分析[J]. 中国修船, 2020, 33(1): 43-46.
[16] Y KAI U, YAN Peikai, HU Jian. Numerical analysis of blade stress of marine propellers[J]. Journal of Marine Science and Application, 2020, 19(3): 436–443.
[17] OZDEN M C, AVCI G A, KORKUT E. A numerical study on prediction of noise characteristics generated by a propeller[C]//10th International Conference on Hydrodynamics–ICHD2012, St. Petersburg, Russia. 2012.
[18] 吴家鸣, 张强. 三种CFD方法计算敞水导管螺旋桨推力特性结果观察[J]. 广州航海学院学报, 2021, 29(3): 56-61.
[19] 刘继鑫, 严天宏, 姚莉, 等. B型图谱桨参数化建模与水动力分析[J]. 船舶工程, 2019, 41(S2): 31-34+85.
[20] 钟思阳, 黄迅. 气动声学和流动噪声发展综述: 致初学者[J]. 空气动力学学报, 2018, 36(3): 363-371.
ZHONG Siyang, HUANG Xun. A review of aeroacoustics and flow-induced noise for beginners[J]. Acta Aerodynamica Sinica, 2018, 36(3): 363-371.