比例电磁铁是柴油机电液复合调速系统的电磁驱动元件,其电磁力特性影响到整个调速系统的精确度与稳定性。首先利用Ansys Maxwell软件搭建比例电磁铁的仿真模型,并通过电磁阀测试平台验证模型的准确性。随后对电磁铁各结构尺寸进行参数化分析,得到影响比例电磁铁电磁力特性的关键参数组合。最后使用响应面法建立平均电磁力、电磁力均方差与上隔磁角、隔磁环位置、衔铁半径3个因素的二次回归模型,并结合遗传算法进行多目标优化。结果表明,相较于原方案,遗传算法优化得到的结构参数组合方案使比例电磁铁的电磁力特性得到明显改善,平均电磁力提高了8.56%,电磁力均方差下降了59.63%。
Proportional solenoid is the electromagnetic driving element of diesel engine electro-hydraulic compound speed control system, and its electromagnetic force characteristics affect the accuracy and stability of the whole speed control system. Firstly, the simulation model of proportional electromagnet was built using Ansys Maxwell software, and the accuracy of the model was verified by the test platform of solenoid valve. Then the structure size of the electromagnet was parameterized, and the key parameters that affect the electromagnetic force characteristics of the proportional electromagnet were obtained. Finally, the quadratic regression model of mean electromagnetic force, mean square error of electromagnetic force and upper magnetic separation angle, magnetic separation ring position and armature radius was established by using response surface method combined with genetic algorithm. The result shows that compared with the original scheme, the structural parameter combination scheme optimize by genetic algorithm can significantly improve the electromagnetic force characteristics of the proportional electromagnet, the average electromagnetic force is increased by 8.56%, and the mean square error of the electromagnetic force is decreased by 59.63%.
2024,46(12): 102-107 收稿日期:2023-08-11
DOI:10.3404/j.issn.1672-7649.2024.12.018
分类号:TH137
基金项目:国家高技术船舶科研项目(2022-296)
作者简介:贺玉海(1976-),男,博士,教授,研究方向为新能源动力系统仿真与性能优化设计
参考文献:
[1] 吴萌, 周友国, 陶刚. AT换挡回路比例阀电磁铁结构优化设计[J]. 液压与气动, 2016(5): 78-82.
[2] 杨晨. 电站调节阀门直驱式电液执行器的仿真和实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
[3] 张邵平, 文李明, 黄念劬. 一种柴油机用液压调速器设计与实现[J]. 液压与气动, 2023, 47(5): 105-110.
[4] BORA E, BRUCE H. W. Unified modeling and analysis of a proportional valve[J]. Journal of the Franklin institute, 2006, 343(1): 48-68.
[5] 郭加利, 张曦, 张鑫彬, 等. 一种微型比例电磁铁研究开发[J]. 液压与气动, 2023, 47(5): 169-174.
[6] 汝晶炜, 向忠, 史伟民. 大流量气动高速开关阀的优化设计[J]. 机电工程, 2014, 31(10): 1282-1286.
[7] 杨瑜君, 吴张永, 蒋佳骏, 等. 导磁型磁流变换向阀设计及性能分析[J]. 液压与气动, 2021, 45(4): 146-152.
[8] 周伟, 张力, 邱强强. 引信用电磁拔销器电磁力测试方法[J]. 探测与控制学报, 2021, 43(2): 36-40.
[9] 李范波, 叶骞, 谢文华. 基于AMT气动伺服系统的高速开关阀设计与优化[J]. 液压与气动, 2019(3): 97-105.
[10] 薛齐豪, 刘放, 梁成, 等. 磁悬浮列车悬浮电磁铁结构优化方法研究[J]. 机械设计与制造, 2020(5): 202-205.
[11] HAHN L S C. Optimal design of permanent magnet actuator for vacuum circuit breakers using response surface methodology[J]. International Journal of Applied Electromagnetics and Mechanics, 2014, 45(1/4): 503-509.
[12] 李卫民, 付松松, 杨泽宇, 等. 基于流固耦合的液压阀芯均压槽多目标优化设计[J]. 液压与气动, 2023, 47(1): 129-137.
[13] PROBIR K B, MADHUJIT D, RAHUL B, et al. Multi objective optimization of performance parameters of a single cylinder diesel engine running with hydrogen using a taguchi-fuzzy based approach[J]. Energy, 2013, 63: 375–386.
[14] 贺玉海, 蒋乾. 船用低速柴油机电控喷油器多参数优化匹配[J]. 内燃机工程, 2020, 41(6): 78-85+94.