波纹管补偿装置的应力分析是进行波纹管设计和寿命评估的重要研究手段。为简化波纹管仿真模型,提高仿真效率,研究了S型波纹管单波简化模型和对称简化模型在内压和弯曲载荷下的有限元仿真技术,提出模型简化方式、载荷施加方法。与整体模型仿真结果对比,采用单波简化模型和对称简化模型进行波纹管内压和弯曲载荷计算,可给出一致的仿真解,最大应力误差不超过1%,满足仿真分析需求。在进行S型波纹管受压和弯曲载荷下的仿真时,可充分利用波纹段波段的对称性和波形的对称性,使用单波简化模型和对称简化模型,提高计算效率,并可保证计算精度。
Stress analysis of corrugated compensator is an important research method for the design and life assessment of corrugated pipes. In order to simplify the simulation model of corrugated pipes and improve the simulation efficiency, the finite element simulation technology of S-type corrugated pipe with single wave simplified model and symmetric simplified model under internal pressure and bending load is studied. Model simplification method and load application method are proposed. Compared with the simulation results of the complete model, the single wave simplified model and symmetric simplified model can give consistent simulation solutions for the calculation of internal pressure and bending load of corrugated pipes, and the maximum stress error is less than 1%, which meets the requirements of simulation analysis. In the simulation of S-type corrugated pipes under pressure and bending load, the symmetry of the wave section and waveform can be fully utilized by using single wave simplified model and symmetric simplified model to improve the calculation efficiency and ensure the calculation accuracy.
2024,46(12): 116-120 收稿日期:2023-08-04
DOI:10.3404/j.issn.1672-7649.2024.12.020
分类号:U661.43
基金项目:国家自然科学基金专项资助项目(52241102)
作者简介:马俊(1979-),男,硕士,研究方向为船舶动力装置设计
参考文献:
[1] 周耀兵, 顾久青, 童秀华. 316 L金属波纹管腐蚀机理分析[J]. 舰船科学技术, 2021, 43(2): 36-39.
ZHOU Yaobing GU Jiuqing, TONG Xiuhua. Research on corrosion mechanism of 316 L metal bellows[J]. Ship Science and Technology, 2021, 43(2): 36-39.
[2] 董仁义, 吴崇建, 李志印. 舰船蒸汽管路的柔性设计分析[J]. 舰船科学技术, 2021.
DONG Renyi, WU Chongjian, LI Zhiyin. Flexibility design analysis on ship steam pipe[J]. Ship Science and Technology, 2021, 43(3): 67-70.
[3] 霍世慧, 许红卫, 朱卫平, 等. 增强S形波纹管内压稳定性分析方法[J]. 火箭推进, 2022, 48(4): 66-71.
HUO Shihui, XU Hongwei, ZHU Weiping, et al. Buckling of the reinforced S-shaped bellows under internal pressure[J]. Journal of Rocket Propulsion, 2022, 48(4): 66-71.
[4] HARINGX JA. Instability of bellows subjected to internal pressure[J]. 1952, 7(3): 189-196.
[5] 郎振华. 多层S型波纹管力学性能分析[D]. 大连: 大连理工大学, 2012.
[6] CLARK R A. On the theory of thin elastic toroidal shells[J]. Journal of Mathematics and Physics, 1950, 29(3): 146-178.
[7] 钱伟长, 吴明德. U型波纹管的非线性特性摄动法计算[J]. 应用数学和力学, 1983, 4(5): 595-608.
QIAN Weichang, WU Mingde. The nonlinear characteristics of U-shaped bellows-calculations by the method of perturbation[J]. Applied Mathematics and Mechanics, 1983, 4(5): 595-608
[8] TAKATSU H, YAMAMOTO M, OHTA M. Stress-analysis method of U-shaped bellows and its experimental verification [J]. 1993, 22(3): 239-250.
[9] 赵永亮. 运载器多层波纹管路的强度和疲劳寿命分析[D]. 大连: 大连理工大学, 2015.
[10] 郭煜敬, 王志刚, 金光耀, 等. 液压成形波纹管减薄率的数值模拟研究[J]. 浙江工业大学学报, 2019, 47(1): 58-62.
GUO Yujing, WANG Zhigang, JIN Guangyao, et al. Numerical simulation research on thickness reduction ratio of the bellows[J]. Journal of Zhejiang University of Technology, 2019, 47(1): 58-62.
[11] 张文良, 曹景浩, 马海峰. 金属波纹管疲劳寿命优化设计研究[J]. 阀门, 2022(6): 424-427.
ZHANG Wenliang, CAO Jinghao, MA Haifeng. Study on fatigue life optimization design of metal bellows[J]. Valve, 2022(6): 424-427.