将方位估计问题看成多标签分类问题,将稠密连接网络应用于单矢量水听器目标方位估计,使用经典方法中广泛关注的二阶统计量作为神经网络的输入,使用不断生成训练集的方法训练神经网络。仿真及湖试结果表明,使用稠密连接网络相较经典方法具有更窄的主瓣和更高的方位分辨力;在2个目标信噪比相差6 dB及以上的情况下,稠密连接网络具备经典方法没有的同时检测2个目标的能力,且仍具有优秀的方位分辨力;当2个目标信噪比相差大于18 dB后稠密连接网络逐渐丧失了对弱目标的检测能力。
Consider the problem of bearing estimation as a multi label classification problem, apply dense connected networks to single vector hydrophone target bearing estimation, use second-order statistics widely concerned in classical methods as input to the neural network, and train the neural network using the method of continuously generating training sets. The simulation and lake trial results show that using DenseNet has narrower main lobes and higher azimuth resolution compared to classical methods; When the signal-to-noise ratio of two targets differs by 6 dB or more, the DenseNet has the ability to simultaneously detect two targets that classical methods do not have, and still has excellent azimuth resolution; When the signal-to-noise ratio difference between two targets exceeds 18 dB, the DenseNet gradually losses its ability to detect weak targets.
2024,46(12): 132-139 收稿日期:2023-08-17
DOI:10.3404/j.issn.1672-7649.2024.12.023
分类号:U666.7
作者简介:柯凯磊(1999-),男,硕士,助理工程师,研究方向为水声信号处理
参考文献:
[1] 惠俊英, 刘宏, 余华兵, 等. 声压振速联合信息处理及其物理基础初探[J]. 声学学报, 2000(4): 303-307.
HUI Junying LIU Hong, YU Huabing, et al. Preliminary study on the joint information processing of sound pressure and vibration velocity and its physical basis[J]. Acta Acustica, 2000(4): 303-307.
[2] 惠俊英, 惠娟. 矢量声信号处理基础[M]. 北京: 国防工业出版社, 2009: 10–17.
[3] HOCHWALD B, NEHORAI A. Identifiability in array processing models with vector-sensor applications[J]. IEEE Transactions on signal processing, 1996, 44(1): 83-95.
[4] 杨士莪. 单矢量传感器多目标分辨的一种方法[J]. 哈尔滨工程大学学报, 2003(6): 591-595.
YANG Shie. A method for multi target resolution of single vector sensor[J]. Journal of Harbin Engineering University, 2003(6): 591-595.
[5] AGARWAL A, AGRAWAL M, KUMAR A. Higher-order-statistics-based direction-of-arrival estimation of multiple wideband sources with single acoustic vector sensor[J]. IEEE Oceanic Engineering., 2020, 45(4): 1439-1449.
[6] 张维, 尚玲. 单矢量水听器水中多目标方位跟踪方法[J]. 国防科技大学学报, 2017, 39(2): 114-119.
ZHANG Wei, SHANG Ling. A method for azimuth tracking of multiple targets in water using a single vector hydrophone[J]. Journal of National University of Defense Technology, 2017, 39(2): 114-119.
[7] 孟春霞, 李秀坤, 杨士莪. 单矢量水听器多目标方位估计的算法研究[J]. 舰船科学技术, 2007(2): 123-126.
MENG Chunxia, LI Xiukun, YANG Shie. Direction estmation of multi-sources received by a single vector sensor[J]. Ship Science and Technology, 2007(2): 123-126.
[8] TICHAVSKY P, WONG K T, ZOLTOWSKI M D. Near-field/far-field azimuth and elevation angle estimation using a single vector hydrophone[J]. IEEE Transactions on Signal Processing, 2001, 49(11): 2498-2510.
[9] 梁国龙, 张锴, 付进, 等. 单矢量水听器的高分辨方位估计应用研究[J]. 兵工学报, 2011, 32(8): 986-990.
LING Guolong, ZHANG Kai, FU Jin, et al. Research on high-resolution direction-of-arrival estimation based on an acoustic vector-hydrophone[J]. Acta Armamentarii, 2011, 32(8): 986-990.
[10] 曾雄飞, 孙贵青, 李宇, 等. 单矢量水听器的几种DOA估计方法[J]. 仪器仪表学报, 2012, 33(3): 499-507.
ZENG Xiongfei, SUN Guiqing, LI Yu, et al. Several approaches of DOA estimation for single vector hydrophone[J]. Chinese Journal of Scientifie Instrument, 2012, 33(3): 499-507.
[11] 王超, 笪良龙, 韩梅, 等. 单矢量水听器稀疏近似最小方差方位估计算法[J]. 声学学报, 2021, 46(6): 1050-1058.
WANG Chao, DA Lianglong, HAN Mei, et al. Signal vector hydrophone sparse asymptotic minimum variance hearing estimation algorithm[J]. Acta Acustica, 2021, 46(6): 1050-1058.
[12] 王宇杰, 李子高, 迟骋, 等. 单矢量水听器的组合二阶统计量解卷积方位估计[J]. 声学学报, 2023, 48(4): 656–667.
WANG Yujie, LI Zigao, CHI Pin, et al. Single vector hydrophone time-domain deconvolution bearing estimation method based on combined second-order statistics[J]. Acta Acustica, 2023, 48(4): 656–667.
[13] ZHANG M, PAN X, SHEN Y N, et al. Deep learning-based direction-of-arrival estimation for multiple speech sources using a small scale array[J]. The Journal of the Acoustical Society of America, 2021, 149(6): 3841.
[14] LIU Y J, CHEN H X, WANG B. DOA estimation based on CNN for underwater acoustic array[J]. Applied Acoustics, 2021, 172: 107594.
[15] 余春祥, 王彪, 朱雨男, 等. 胶囊网络矢量水听器DOA估计[J]. 舰船科学技术, 2023, 45(4): 128–132.
YU Chunxiang, WANG Biao, ZHU Yunan, et al. DOA estimation of vector hydrophone based on capsules network[J]. Ship Science and Technology, 2023, 45(4): 128–132.
[16] 曹怀刚, 任群言, 郭圣明, 等. 卷积神经网络单矢量水听器方位估计[J]. 哈尔滨工程大学学报, 2020, 41(10): 1524-1529.
CAO Huaigang, REN Qunyan, GUO Shengming, et al. Source azimuth estimation with single vector sensor based on convolutional neural network[J]. Journal of Harbin Engineering University, 2020, 41(10): 1524-1529.
[17] 杨德森, B. A. Γордиенко, 洪连进, 水下矢量声场理论与应用等[J]. 声学学报, 2015, 40(1): 124-125.
YANG Desen, B. A. Γордиенко, HONG Lian-jin, et al. Underwater vector sound field theory and its applications[J]. Acta Acustica, 2015, 40(1): 124-125.
[18] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 4700–4708.
[19] TSOUMAKAS G, KATAKIS I. Multi-label classification: an overview[J]. International Journal of Data Ware- housing and Mining, 2007, 3(3): 1-13.