针对船舶交通流量大、水域繁忙情况下,通行能力预测难度过高的问题,提出船舶拥堵水域通行能力预测技术。利用船舶坐标位置以及航行速度,确定船舶状态,建立船舶航行队列模型。依据船舶领域模型确定船舶航行对应的椭圆形区域,作为船舶拥堵水域的领域。确定船舶领域内,影响航道容量的相关因素。设置船舶密度、船舶航行速度等水域通行能力影响指标,作为长短时记忆网络的输入。长短时记忆网络通过遗忘门、输入门以及输出门3个门控单元,选择保留或遗忘输入的数据,输出船舶拥堵水域通行能力预测结果。实验结果表明,该技术能够有效预测船舶拥堵水域通行能力,提高航道利用率,保障水域交通安全性。
Aiming at the problem of high difficulty in predicting traffic capacity in congested water areas due to high ship traffic flow and busy waters, a technology for predicting traffic capacity in congested water areas is proposed. Determine the ship's status and establish a ship navigation queue model by utilizing the ship's coordinate position and navigation speed. Based on the Fujino ship domain model, determine the elliptical area corresponding to ship navigation as the domain of ship congestion waters. Determine the relevant factors that affect the capacity of shipping channels within the field of ships. Set indicators such as ship density, ship speed, and other factors that affect water traffic capacity as inputs for the long short-term memory network. The long short-term memory network uses three gating units, namely the forget gate, input gate, and output gate, to select whether to retain or forget the input data, and output the prediction results of ship traffic capacity in congested water areas. The experimental results show that this technology can effectively predict the traffic capacity of ship congested waters, improve the utilization rate of waterways, and ensure the safety of water traffic.
2024,46(12): 170-173 收稿日期:2024-01-16
DOI:10.3404/j.issn.1672-7649.2024.12.030
分类号:U612
作者简介:李道科(1979-),男,硕士,副教授,研究方向为船舶通航安全及航海技术
参考文献:
[1] 杨琪森, 王慎执, 桑金楠, 等. 复杂开放水域下智能船舶路径规划与避障方法[J]. 计算机集成制造系统, 2022, 28(7): 2030-2040.
YANG Qisen, WANG Shenzhi, SANG Jinnan, et al. Path planning and real-time obstacle avoidance methods of intelligent ships in complex open water environment[J]. Computer Integrated Manufacturing Systems, 2022, 28(7): 2030-2040.
[2] 李光泽, 俞万能, 廖卫强, 等. 基于动态窗口法的近海水域船舶避障算法研究[J]. 中国舰船研究, 2024, 19(1): 230-237.
LI Guangze, YU Wanneng, LIAO Weiqiang, et al. Obstacle avoidance algorithm for ships in complex waters based on dynamic window approach[J]. Chinese Journal of Ship Research, 2024, 19(1): 230-237.
[3] 高飞德, 曹宇皓, 张鹏, 等. 基于扇形网格叠加计算的通航分道水域船舶领域[J]. 大连海事大学学报, 2023, 49(4): 88-94.
GAO Feide, CAO Yuhao, ZHANG Peng, et al. Ship domain in traffic lane waters based on sector grid superposition calculatio[J]. Journal of Dalian Maritime University, 2023, 49(4): 88-94.
[4] 王伟, 余志成, 张泰山, 等. 船舶交通量三阶段法预测模型及其应用[J]. 上海海事大学学报, 2021, 42(3): 23-28+35.
WANG Wei, YU Zhicheng, ZHANG Taishan, et al. Three-stage prediction model of ship traffic volume and its application[J]. Journal of Shanghai Maritime University, 2021, 42(3): 23-28+35.
[5] 黄金, 邓强, 许辰, 等. 限制水域船舶水动力干扰快速计算方法[J]. 哈尔滨工程大学学报, 2021, 42(5): 601-609.
HUANG Jin, DENG Qiang, XU Chen, et al. Fast calculation method of ship-ship hydrodynamic interaction in restricted waters[J]. Journal of Harbin Engineering University, 2021, 42(5): 601-609.