对含裂纹材料与结构断裂力学评估中的最大环向应力准则(MTS)、最小应变能密度因子准则(SED)和平均应变能密度准则(ASED)以及在此基础上考虑应力场常数项影响修正的断裂准则进行介绍;基于考虑裂尖应力场奇异项和常数项的修正MTS准则、修正SED准则和修正ASED准则,对比分析了裂尖应力场常数项对I型裂纹的起裂扩展行为,探究了裂纹尖端应力场常数项以及材料泊松比对I型裂纹偏折、断裂极限的影响规律,掌握了应力场常数项对I型裂纹偏折、起裂扩展影响阀值。研究结果表明,裂纹尖端应力场常数项T应力对I型裂纹起裂扩展偏折角及断裂判据的影响不可忽略,研究结果可为含裂纹材料与结构断裂力学评估提供一定参考。
The maximum tangential stress (MTS), minimum strain energy density factor (SED), averaged strain energy density (ASED) criterion and the modified criteria based on MTS, SED and ASED considering non-singular stress term T-stress are introduced. The effect of non-singular stress term T-stress and the Poisson’s ratio on the mode I crack fracture initiation angel and the critical intensity factor based on different criterion were analyzed and compared. The influence trend and threshold of the T-stress effect on mode I crack fracture deflection and crack onset propagation condition were then given. The analysis results show that the constant T-stress has a significant effect on mode I fracture behavior for linear elastic materials.
2024,46(13): 1-8 收稿日期:2023-05-29
DOI:10.3404/j.issn.1672-7649.2024.13.001
分类号:O346.1
作者简介:黄如旭(1987-),男,研究员,研究方向为海洋工程结构疲劳与断裂
参考文献:
[1] 吴学仁, 徐武. 裂纹体分析的权函数理论与应用: 回顾和展望[J]. 力学进展, 2022, 52(3): 415-507.
WU Xueren, XU Wu. Weight function theory and applications for crack analysis: A review and outlook[J]. Advances in Mechanics, 2022, 52(3): 415-507.
[2] WILLIAMS M L. On the stress distribution at the base of a stationary crack[J]. Journal of Applied Mechanics, 1957(24): 109-114.
[3] ERDOGAN F, SIH G C. On the crack extension in plates under plane loading and transverse shear[J]. Journal of Basic Engineering, 1963(85): 519-25.
[4] SIH G C. Some basic problems in fracture mechanics and new concepts[J]. Engineering Fracture Mechanics, 1973(5): 365-377.
[5] SIH G C. Strain energy density factor applied to mixed mode crack problem[J]. International Journal of Fracture, 1974(10): 305-321.
[6] LAZZARIN P, ZAMBARDI R. A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches[J]. International Journal of Fracture, 2001, 112(3): 275-298.
[7] 杨立云, 韦鹏, 王青成, 等. 基于ABAQUS平台考虑T应力的I型裂纹扩展模拟开发[J/OL]. 工程力学: 1-9[2023-05-29].
YANG Liyun, WEI Peng, WANG Qingcheng, et al. Development of mode-I crack propagation simulation considering T-stress based on abaqus platform[J/OL]. Engineering Mechanics: 1-9[2023-05-29].
[8] 华文, 潘欣, 淦志强, 等. 基于广义最大周向应变准则的断裂特性研究[J]. 西南石油大学学报(自然科学版), 2021, 43(6): 42-53.
HUA Wen, PAN Xin, GAN Zhiqiang, et al. A study on the fracture characterisc analysis based on the generalized maximum tangential strain criterion[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(6): 42-53.
[9] LARSSON S G, CARLSSON A J. Influence of non-singular stress terms and specimen geometry on small-scale yielding at crack tips in elastic-plastic materials[J]. Journal of Physics and Mechincs, 1973(21): 263-277.
[10] AYATOLLAHI M R, MOGHADDAM M R, RAZAVI S M J, et al. Geometry effects on fracture trajectory of PMMA samples under pure mode-I loading[J]. Engineering Fracture Mechanics, 2016(163): 449-461.
[11] ASTM International, E2899-15. Standard test method for measurement of initiation toughness in surface cracks under tension and bending[S]. West Conshohocken: ASTM International, 2015.
[12] SMITH D J, AYATOLLAHI M R, PAVIER M J. The role of T-stress in brittle fracture for linear elastic materials under mixed-mode loading[J]. Fatigue Fracture Engineering Material Structure, 2001(24): 137-150.
[13] 赵艳华, 陈晋, 张华. T应力对I-II复合型裂纹扩展的影响[J]. 工程力学, 2010, 27(4): 5-12.
ZHAO Yanhua, CHEN Ji, ZHANG Hua. Influence of T-stress on crack propagation for I-II mixed mode loading[J]. Engineering Mechanics, 2010, 27(4): 5-12.
[14] MOGHADDAM M R, AYATOLLAHI M R, BERTO F. Mixed mode fracture analysis using generalized averaged strain energy criterion for linear elastic materials[J]. International Journal of Solids and Structures, 2017(120): 137-145.
[15] 高文, 王生楠. T应力对线弹性材料脆性断裂的影响[J]. 西北工业大学学报, 2015, 33(6): 928-935.
GAO Wen, WANG Shengnan. Effect of T-stress on the brittle fracture for linear elastic materials[J]. Journal of Northwestern Polytechnical University, 2015, 33(6): 928-935.
[16] 黄如旭, 谢晓忠, 谢锋, 等. 基于平均应变能密度准则的裂纹断裂扩展特性分析[J]. 舰船科学技术, 2020, 42(3): 20-24.
HUANG Ruxu, XIE Xiaozhong, XIE Feng, et al. Crack fracture and growth behavior based on averaged strain energy density criterion[J]. Ship Science and Technology, 2020, 42(3): 20-24.