为考察破冰船船体在破冰冲击载荷下的振动响应特征,利用环向裂纹法对“雪龙2”号破冰船在典型破冰工况下的破冰冲击载荷进行预报,并通过傅里叶变换把破冰冲击载荷转换为频域载荷,进一步建立了“雪龙2”号破冰船全船有限元模型,进行破冰冲击载荷下全船振动响应计算分析。结果表明,破冰工况下,破冰冲击载荷对船体结构低频振动响应(5 Hz以下)贡献很大,容易引起船体梁振动、雷达桅结构振动等,对船体板格、加强筋、板架等船体结构的局部振动水平贡献相对较小。
In order to investigate the vibration response characteristics of the Icebreaker hull structure under the ice breaking impact load, the circumferential crack method was applied to predict the ice breaking impact load of the "Xuelong 2" Icebreaker under typical ice breaking conditions. The ice breaking impact load was converted into frequency domain load through Fourier transform. Furthermore, the global structural finite element model of the "Xuelong 2" Icebreaker was established to calculate and analyze the hull structure vibration response under the ice breaking impact load. The results indicate that under ice breaking conditions, the ice breaking impact load contributes significantly to the low-frequency vibration response of the hull structure (below 5 Hz), which is prone to causing vibration of the hull girder and radar mast structure, and comparatively has small contribution to local vibration levels of hull structures such as plate, stiffener, and grillage.
2024,46(13): 9-13 收稿日期:2023-08-16
DOI:10.3404/j.issn.1672-7649.2024.13.002
分类号:U674.21
作者简介:徐义刚(1987-),男,硕士,高级工程师,研究方向为船舶结构设计
参考文献:
[1] ISAY M B, NIKOLAY N S. Features of ship vibration in ice operation conditions [C]// Proceedings of the Twenty-second (2012) International Offshore and Polar Engineering Conference, Rhodes, Greece, 2012.
[2] BOUDANOV D, NIKOLSKY Y. Ship hull vibrations underway in ice[C]// Proceedings of International Conference Оn Development and Commercial Utilization of Technologies in Polar Region, St. Petersburg, 1996.
[3] 季顺迎, 雷瑞波, 李春花, 等. “雪龙”号科考船在冰区航行的船体振动测量研究[J]. 极地研究, 2017, 29(4): 427-434.
[4] 蔡晓涛, 黄志武, 陈旭, 等. 可调螺距螺旋桨激励下船尾结构振动控制研究[J]. 舰船科学技术, 2022, 44(18): 15-19.
CAI Xiaotao, HUANG Zhiwu, CHEN Xu, et al. Research on vibration control of stern structure excited by controllable pitch propeller[J]. Ship Science and Technology, 2022, 44(18): 15-19.
[5] 王丽丽, 汪蔷. 某散货船型振动响应特性分析[J]. 船海工程, 2016, 45(4): 50-53.
WANG Lili, WANG Qiang. Analysis of vibration response characteristics for a bulk carrier[J]. Ship and Ocean Engineering, 2016, 45(4): 50-53.
[6] SILLITOE A, UPCRAFT D, RICH K, et al. Supporting human performance in ice and cold conditions[R]. London: Lloyd’s Register, 2010.
[7] 王帅飞, 张大勇, 王国军, 等. 冰致海上风电基础结构稳态振动分析[J]. 船海工程, 2019, 48(6): 91-95.
WANG Shuaifei, ZHANG Dayong WANG Guojun, et al. Analysis of ice-induced steady-state vibration for offshore wind turbine foundation[J]. Ship and Ocean Engineering, 2019, 48(6): 91-95.
[8] ZHOU L, RISKA K, JI C. Simulating transverse icebreaking process considering both crushing and bending failures[J]. Marine Structures, 2017(54): 167-187.
[9] LI F, GOERLANDT F, KUJALA P. Numerical simulation of ship performance in level ice: A framework and a model[J]. Applied Ocean Research, 2020, 102(1): 102288.
[10] 中国船级社. 船上振动控制指南[S]. 北京: 人民交通出版社, 2021.