T型喷口是一种附加在喷水推进装置后方,改变水流纵向喷射方向为横向的模型试验装置。该装置只在船体内部流道上产生力的作用,既可反映常规喷口推进船模自航状态下,推进装置的抽吸作用对船尾边界层的影响,又对船身浮态影响很小,仅通过船模阻力试验和获流区PIV测试试验,结合动量通量法换算,可将常规推进船模自航试验中,推进系统对船体阻力的影响分离出来。通过CFD手段,采用流量边界条件法,对某带有T型喷口推进装置的船模阻力性能进行数值模拟,并与模型试验结果进行比较分析。最后,对T型喷口装置的工作原理进行说明。
The T-shaped nozzle is a model test device attached to the rear of the water-jet propulsion unit that changes the longitudinal jet direction of the water flow to the lateral direction. The device only generates force on the internal flow passage of the ship hull, which not only reflects the influence of the suction effect of the propulsion device on the stern boundary layer under the self-propelled state of the ship model propelled by the conventional nozzle, but also has little influence on the floating state of the shipbody. Only through the ship model resistance test and PIV test in the capture area, combined with the momentum flux method conversion, the influence of the propulsion system on the hull resistance in the conventional nozzle propulsion ship model self-propelled test can be separated. Through CFD method, the flow boundary condition method is used to numerically simulate the resistance performance of a ship model with a T-shaped nozzle propulsion device, and compare with the model test results. Finally working principle of the T-shaped nozzle propulsion device is explained.
2024,46(13): 18-23 收稿日期:2023-09-13
DOI:10.3404/j.issn.1672-7649.2024.13.004
分类号:U664.3
作者简介:吴琼(1978-),女,硕士,高级工程师,研究方向为计算流体力学
参考文献:
[1] 罗灿, 成立, 刘超, 等. 船用喷水推进泵装置水动力特性数值模拟[J]. 排灌机械工程学报, 2015, 33(5): 374-379.
[2] 仝博, 王永生, 杨琼方, 等. 喷水推进高速三体滑行艇数值自航研究[J]. 船舶力学, 2018, 22(7): 789-796.
TONG Bo, WANG Yongsheng, YANG Qiongfang, et al. Numerical simulation for self-propulsion study of a high-speed planning trimaran[J]. Journal of Ship Mechanics, 2018, 22(7): 789-796.
[3] 徐锁林, 陈红勋, 马峥, 等. 自航条件下船泵耦合的喷水推进特性数值分析[J]. 中国造船, 2021, 62(1): 40-49.
XU Suolin, CHEN Hongxun, MA Zheng, et al. Numerical analysis of waterjet propulsion characteristics with pump-hull coupling under self-propulsion condition[J]. SHIPBUILDING OF CHINA, 2021, 62(1): 40-49.
[4] 靳栓宝, 沈洋、王东, 等. 实尺度喷水推进船拖泵工况数值模拟与分析[J]. 船舶力学, 2016, 20(11): 1381-1387.
JIN Shuangbao, SHEN Yang, WANG Dong, et al. Research on the pump towing drag of hull scale waterjet ship with CFD[J]. Journal of Ship Mechanics, 2016, 20(11): 1381-1387.
[5] 孙存楼, 王永生, 徐文珊, 等. 喷水推进船负推力减额机理研究[J]. 水动力学研究与进展A辑, 2011, 26(2): 177-185.
SUN Cunlou, WANG Yongsheng, XU Wenshan, et al. Mechanism of negative thrust deduction factor of waterjet hull[J]. Chinese Journal Of Hydronamics, 2011, 26(2): 177-185.
[6] 胡彬彬, 程涛, 程哲, 等. 船体与喷水推进装置相互作用的仿真分析[J]. 船海工程, 2015, 44(1): 60-63.
HU Binbin, CHEN Tao, CHEN Zhe, et al. Numerical simulation of interaction between the waterjet and hull[J]. Ship&Ocean Engineering. 2015, 44(1): 60-63.
[7] ARASH E, LARSSON L, RICKAD B. Net and Gross Thrust in Waterjet Propulsion[J]. Journal of Ship Research, V. 60, 2016(2): 78-91.
[8] 钱浩, 宋科委, 郭春雨, 等. 喷水推进器流道对船舶阻力性能的影响[J]. 舰船科学技术, 2017, 12(2): 22-29.
QIAN Hao, SONG Kewei, GUO Chunyu, et al. Influence of waterjet duct on ship’s resistance performance[J]. Chinese Journal of Ship Research, 2017, 12(2): 22-29.
[9] 易文彬, 王永生, 刘承江, 等. 喷水推进三体船推力减额计算及分析[J]. 哈尔滨工程大学学报, 2019, 40(3): 572-578.
[10] 戴原星, 王金宝, 尹晓辉, 等. 某V型船尾四台喷水推进器进流特性数值模拟与分析[J]. 中国造船, 2018, 59(2): 72-79.
DAI Yuanxing, WANG Jinbao, YIN Xiaohui, et al. Numerical simulation of flow characteristics of four waterjet ducts in a V-type of ship[J]. Shipbuilding Of China, 2018, 59(2): 72-79.
[11] 戴原星, 张志远, 刘建国, 等. 喷水推进三体船阻力与自航数值模拟研究[R]. 上海, 中国船舶集团第七〇八研究所, 2019.
[12] 刘志林, 于瑞亭, 朱齐丹. 喷水推进船舶边界层影响系数的计算方法研究[J]. 船舶力学, 2012, 16(10): 1115-1121.
LIU Zhilin, YU Ruiting, ZHU Qidan. Study of a method for calculating boundary layer influence coefficients of ship and boat propelled by water-jet[J]. Journal of Ship Mechanics, 2012, 16(10): 1115-1121.