为研究轻质燃油舱中的日用舱和储油舱油舱吸入口流动特性,本文通过CFD仿真建立了日用舱和储油舱喇叭口、上斜口及增大储油舱集油槽后的吸入口有限元模型,模拟储油舱向日用舱进行油料调拨及使用日用舱向目标进行油料加注时油舱吸口周围的流动特性,采用湍流模型模拟实际流动状态。通过改变流动域、边界条件等设置,对不同油舱的不同吸入口形式进行CFD仿真,得到系列速度流线规律。仿真结果表明:1)同样布置情况下,采用上斜45°吸口相比于喇叭口吸口对集油舱内部扰动影响较小;2)吸入口相对于舱底、舱壁的布置位置对集油槽内流体扰动情况影响较大,在设计中需特别关注。
In order to study the flow characteristics of the fuel tank intake ports of the day tank and the storage tank in the light fuel tank, in this paper, the finite element models of the intake ports of the day tank and the storage tank with flared and upward sloped ports and enlarged fuel tank collector tanks were established by CFD simulation to simulate the flow characteristics around the tank intake ports of the storage tank when transferring the fuel to the day tank and refueling targets using the day tank, and the turbulence model is adopted to simulate the actual flow conditions. The turbulence model is used to simulate the actual flow state. By changing the flow domain and boundary conditions, CFD simulations are carried out for different suction ports of different fuel tanks, and series of velocity streamlines and cloud diagrams are obtained. The simulation results show that: 1) under the same arrangement, the use of upward slanting 45° suction port has less influence on the internal disturbance of the oil collecting tank compared with the flared suction port; 2) the position of the suction port in relation to the bilge and the bulkhead has a greater influence on the fluid disturbance in the oil collecting tank, which needs to be paid special attention to in the design.
2024,46(13): 43-49 收稿日期:2023-12-11
DOI:10.3404/j.issn.1672-7649.2024.13.009
分类号:U674
作者简介:马跃(1992-),女,工程师,研究方向为航空保障
参考文献:
[1] 胡婕, 刘绪儒, 董贺峰, 等. 新型防涡流油舱吸入装置的设计及流场数值仿真研究[C]//2018年全国工业流体力学会议, 2018.
[2] 陈淑玲, 杨松林. Fluent软件在水面船舶数值计算中的应用[J]. 舰船科学技术, 2012, (11): 37–41+63.
CHEN Shuling, YANG Songlin. Application of Fluent in numerical simulation of free-surface ship[J]. Ship Science and Technology, 2012, (11): 37–47+63.
[3] 张怀新, 潘雨村. CFD在潜艇外形方案比较中的应用[J]. 船舶力学, 2006(4): 1-8.
[4] 付颐鑫. 船舶螺旋桨敞水性能CFD模拟[D]. 大连: 大连海事大学, 2012.
[5] 王国亮, 王超, 乔岳, 等. 串列螺旋桨水动力性能的数值预报[J]. 舰船科学技术, 2016, 38(5): 10-13.
WANG Gongliang, WANG Chao, QIAO Yue, et al. Numerical prediction of the propeller’s hydrodynamics performance[J]. Ship Science and Technology, 2016, 38(5): 10-13.
[6] 江山, 张京伟, 吴崇健, 等. 通海阀内流场的三维数值模拟[J]. 中国舰船研究, 2009, 4(2): 37-41.
[7] 崔铭超, 唐科范, 刘桦. 基于CFD技术的阀门内流道优化[J]. 水动力学研究与进展, 2010, 25(4): 438-445.
[8] 巴鹏, 闫小楼, 欧周华, 等. 稀油站管路系统优化设计及CFD模拟[J]. 润滑与密封, 2012(11): 70-74.
[9] 吴浩, 董文才, 欧勇鹏. 船舶气层减阻多相流数值模拟方法适配性研究[J]. 海军工程大学学报, 2016(3): 70-75.
[10] 中国船舶工业综合技术经济研究院. CB/T 4230-2013, 船用吸入口[S]. 北京: 中华人民共和国工业和信息化部, 2013.