环肋圆柱壳是深潜器耐压结构的主要形式,但由于极限承载能力和振动特性的需求,存在不同的环肋布局形式。为探究环肋布局对钛合金圆柱耐压壳内爆的影响,基于任意拉格朗日欧拉方法开展数值研究。首先对比试验结果验证液-固-气三相流固耦合数值模型的准确性。然后分析3种环肋布局下圆柱耐压壳水下内爆过程中的结构动态响应、冲击波传播以及能量演化等特征。结果表明,环肋均布时,内爆中心由筒体中部向一端移动。而中部和端部加强时,内爆中心由环肋稀疏位置向密集位置移动,结构动能均存在显著的二次波峰现象。此外,中部加强能有效降低最大冲击波峰值。通过对环肋圆柱壳内爆响应特性的分析,对深海耐压结构的设计具有重要的工程意义。
Ring-stiffened cylindrical shell is the main type of pressure hull for deep-sea submersible vehicles, but there are different ring-stiffener layouts due to the requirements of ultimate bearing capacity and vibration characteristics. In order to investigate the effect of ring-stiffener layout on the implosion of cylindrical pressure hull, numerical research is carried out based on the arbitrary Lagrange Euler method. Firstly, the accuracy of the fluid-structure interaction numerical model of liquid-solid-gas is verified by comparing the results of test. Then, some characteristics such as the dynamic response of structure, the propagation of shock wave and the evolution of energy in the process of underwater implosion under three kinds of ring-stiffener layout are investigated. The results show when the ring-stiffeners are uniformly distributed, the implosion center moves from the middle of the cylinder to one end. However, when the middle and end of the cylinder are strengthened, the implosion center moves from the sparse position to the dense position of ring-stiffeners. The kinetic energy evolution of both of them has a significant secondary wave peak phenomenon, and the ring-stiffener layout of reinforced middle can effectively reduce the maximum shock wave peak. Through the analysis of the implosion response of ring-stiffened cylindrical pressure hull, there is important engineering significance for the design of deep-sea pressure structures.
2024,46(13): 50-58 收稿日期:2023-08-30
DOI:10.3404/j.issn.1672-7649.2024.13.010
分类号:P751
基金项目:国家自然科学基金资助项目(U2067220);中核集团“青年英才”科研项目;国家“万人计划”青年拔尖人才项目
作者简介:贺宇培(1998-),男,硕士研究生,研究方向为深海耐压结构水下内爆及防护
参考文献:
[1] WEI Chanqiu, CHEN Gong, SERGEEV A, et al. Implosion of the argentinian submarine ARA San Juan S-42 undersea: modeling and simulation[J]. Communications in Nonlinear Science and Numerical Simulation, 2020: 105397.
[2] TURNER S E. Small-scale implosion testing of glass and aluminum cylinders[R]. Newport, Rhode Island: Naval Undersea Warfare Center Division. 2004: 04–061.
[3] RAYLEIGH L. On the pressure developed in a liquid during the collapse of a spherical cavity[J]. Philosophical Magazine. 1917, 34(200): 94–98.
[4] PLESSET M S. The dynamics of cavitation bubbles[J]. Journal of Applied Mechanics. 1949, 16: 277–282.
[5] 朱继懋, 罗曼芦. 用二相流理论进行承压试验的内破裂问题的预报[J]. 海洋工程, 1985, 3(1): 4-17.
ZHU Jimao, LUO Manlu. Calculation prediction of implosion with the two-phase flow theory in a high pressure test[J]. The Ocean Engineering, 1985, 3(1): 4-17.
[6] 陈建国, DIETRICH R A, 朱继懋. 内破裂的数值模拟与分析[J]. 中国造船, 1994(3): 10.
CHEN Jianguo, DIETRICH R A, ZHU Jimao. Numerical simulation and analysis of implosion phenomena[J]. Shipbuilding of China, 1994(3): 10.
[7] ZHANG Aman , LI Shimin , CUI Pu , et al. A unified theory for bubble dynamics[J]. Physics of Fluids, 2023, 35, 033323.
[8] TURNER S E. Underwater implosion of glass spheres[J]. Journal of the Acoustical Society of America. 2007, 121(2): 844.
[9] DIWAN M, DOLPH J, LING J. Underwater implosion of large format photo-multiplier tubes[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2012, 670: 61–67.
[10] CRESSEY D. Ocean-diving robot will not be replaced[J]. Nature, 2015, 528(7581): 176-177.
[11] ZHANG Xiaolong, FENG Miaolin, ZHAO Min, et al. Failure of silicon nitride ceramic flotation spheres at critical state of implosion[J]. Applied Ocean Research, 2020, 97: 102080.
[12] HU Yandong, ZHAO Yifan, ZHAO Min, et al. Three phases fluid-structure interactive simulations of the deepsea ceramic sphere's failure and underwater implosion[J]. Ocean Engineering, 2022, 245: 110494.
[13] SUN Shengxia, CHEN Fenghua, ZHAO Min. Numerical simulation and analysis of the underwater implosion of spherical hollow ceramic pressure hulls in 11000 m depth[J]. Journal of Ocean Engineering and Science, 2023, 8(2): 181-195.
[14] TURNER S E, AMBRICO J M. Underwater implosion of cylindrical metal tubes[J]. Journal of Applied Mechanics, 2013, 80(1): 011013-1-011013–11.
[15] FARHAT C, WANG K G, MAIN A, et al. Dynamic implosion of underwater cylindrical shells: experiments and computations[J]. International Journal of Solids and Structures, 2013, 50(19): 2943-2961.
[16] IKEDA C M, WILKERLING J, DUNCAN J H. The implosion of cylindrical shell structures in a high-pressure water environment[J]. Proceedings Mathematical Physical & Engineering Sciences, 2013, 469(2160): 20130443.
[17] LIU Song, HUANG Zhixin, LI Ying. Insight into the underwater implosion mechanisms of thin-walled metallic cylindrical shells[J]. Ocean Engineering, 2023, 276: 114129.
[18] WU Yu, DING Jian, WANG Fang, et al. Research on the quasi-static collapse and instantaneous implosion of the deep-sea spherical pressure hull[J]. Marine Structures, 2022, 83: 103191.
[19] WU Yu, LUO Ronglang, WANG Fang, et al. Effect of the implosion of a deep-sea pressure hull on surrounding structures[J]. Applied Ocean Research, 2023, 132: 103477.
[20] ZHENG J, HE Y, ZHAO M, et al. Dynamic response analysis of spherical pressure hull implosion inside adjacent underwater structure[J]. Ocean Engineering, 2023, 283: 115169.
[21] JAFARI A A, BAGHERI M. Free vibration of rotating ring stiffened cylindrical shells with non-uniform stiffener distribution[J]. Journal of Sound & Vibration, 2006, 296(1–2): 353-367.
[22] 纪刚, 赵鹏, 谭路, 等. 具有无序尺寸肋骨配置的加筋圆柱壳振动局域化[J]. 振动工程学报, 2022, 35(5): 1138-1146.
JI Gang, ZHAO Peng, TAN Lu, et al. Localization of vibration on a framed cylindrical shell with irregular stiffener size configuration[J]. Journal of Vibration Engineering, 2022, 35(5): 1138-1146.
[23] 张桂勇, 王双强, 孙哲, 等. 船舶与海洋工程流固耦合数值方法研究进展[J]. 中国舰船研究, 2022, 17(5): 52–73.
ZHAN Guiyong, WANG Shuangqiang, SUN Zhe, et al. Research developments in numerical methods of fluid-structure interactions in naval architecture and ocean engineering[J]. Chinese Journal of Ship Research, 2022, 17(5): 52–73.
[24] DONEA J. Arbitrary Lagrangian-Eulerian finite element analysis[J]. Computational methods for Transient Analyasis, 1983: 474–516.
[25] PANTALÉ O, RAKOTOMALALA R, TOURATIER M. An ALE three-dimensional model of orthogonal, oblique metal cutting processes[J]. International Journal of Forming Processes, 1998, 1: 371-388.
[26] LESEUR D. Experimental investigations of material models for Ti-6A1-4V and 2024-T3[R]. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States), 1999.
[27] 潜水系统和潜水器入级与建造规范[S]. 中国船级社, 2018.
[28] ITTC. Uncertainty analysis in CFD, Uncertainty assessment methodology[C]//Proceedings of the International Towing Tank Conference. 1999: 4.9-04-01-01.
[29] MUTTAQIE T, PARK S H, SOHN J M, et al. Implosion tests of aluminium-alloy ring-stiffened cylinders subjected to external hydrostatic pressure[J]. Marine Structures, 2021, 78: 102980.