跨介质航行体入水瞬间会受到巨大的冲击载荷,极易导致结构破坏甚至内部器件失灵。为发展有效的降载方法,本文基于 VOF(Volume of Fluid)多相流模型,研究头部喷气航行体入水过程的载荷特性和流体动力特性,分析喷气压力、喷气高度对降载效果的影响,并探索头部喷气降载方法有效性的入水速度范围。研究结果表明,头部喷气使自由液面下凹形成空腔,并能极大地降低航行体所受阻力和冲击力,延缓了航行体撞水时间,从而实现冲击载荷控制;喷气压力和喷气高度对入水空泡形态及冲击压力峰值的影响都不大,合理的选择既能达到降载效果又能节约喷气量;入水速度为50 m/s时,降载量高达76.51%,但当入水速度为300 m/s时,降载量仅为39.92%。因此,针对高亚声速跨介质入水问题,需进一步探索主被动相结合的复合降载方法。
Cross-media vehicles are subjected to huge impact loads when they enter the water, which can easily lead to structural failure and even internal device failure. In order to develop an effective load shedding method, this paper studies the loading characteristics and hydrodynamic characteristics of the head jet vehicle entering the water based on the VOF (volume of fluid) multiphase flow model, analyzes the influence of jet pressure and jet height on the load shedding effect, and explores the entry velocity range of the effectiveness of the head jet load shedding method. The results show that the head jet concaves the free liquid surface to form a cavity, which can greatly reduce the resistance and impact force of the vehicle, delay the collision time of the vehicle, and realize the impact load control. The jet pressure and jet height have little effect on the bubble form and impact pressure peak, and a reasonable choice can not only achieve the load reduction effect but also save the jet volume; When the water entry speed is 50 m/s, the load reduction capacity is as high as 76.51%, but when the water entering speed is 300 m/s, the load reduction capacity is only 39.92%. Therefore, in view of the problem of high subsonic cross-media water ingress, it is necessary to further explore the composite load reduction method combining active and passive.
2024,46(13): 59-66 收稿日期:2023-09-11
DOI:10.3404/j.issn.1672-7649.2024.13.011
分类号:TJ303.4
基金项目:国家自然科学基金面上项目(52176164)
作者简介:彭睿哲(1999-),男,硕士研究生,研究方向为高速入水降载技术
参考文献:
[1] 董传瑞, 马奥家, 于贺, 等. 结构物入水砰击过程求解方法对比研究[J]. 舰船科学技术, 2022, 44(20): 7-14.
DONG Chuanrui, MA Aojia, YU He, et al. Comparative study on the solution methods of the slamming process of the structure entering the water[J]. Ship Science and Technology, 2022, 44(20): 7-14.
[2] 高英杰, 刚旭皓. 基于SPH-FEM耦合方法的回转体高速入水数值研究[J]. 舰船科学技术, 2022, 44(17): 6-11.
GAO Yingjie, GANG Xuhao. Numerical study of high-speed water inlet of gyratory body based on SPH-FEM coupling method[J]. Ship Science and Technology, 2022, 44(17): 6-11.
[3] 郭聚, 韩建立, 李新成, 等. 基于六自由度的空投鱼雷雷伞系统建模仿真研究[J]. 舰船电子工程, 2022, 42(3): 124-128.
GUO Ju, HAN Jianli, LI Xincheng, et al. Research on modeling and simulation of air-dropped torpedo umbrella system based on six degrees of freedom[J]. Ship Electronic Engineering, 2022, 42(3): 124-128.
[4] 陈洋, 吴亮, 曾国伟, 等. 带环形密闭气囊弹体入水冲击过程的数值分析[J]. 爆炸与冲击, 2018, 38(5): 1155-1164.
CHEN Yang, WU Liang, ZENG Guowei, et al. Numerical analysis of the impact process of the projectile body with annular closed airbag entering the water[J]. Explosion and Shock Waves, 2018, 38(5): 1155-1164.
[5] 权晓波, 包健, 孙龙泉, 等. 基于耦合欧拉-拉格朗日算法的航行体缓冲头帽冲击性能[J]. 兵工学报, 2022, 43(4): 851-860.
QUAN Xiaobo, BAO Jian, SUN Longquan, et al. Impact performance of vehicle body buffered head cap based on coupled Euler-Lagrange algorithm[J]. Acta Armamentarii, 2022, 43(4): 851-860.
[6] SHI Yao, GAO Xingfu, PAN Guang. Design and load reduction performance analysis of mitigator of AUV during high speed water entry[J]. Ocean Engineering, 2019, 181: 314-329.
[7] 郑可心. 降载空化器入水过程中的动力特性分析[D]. 哈尔滨: 哈尔滨工程大学, 2021.
[8] 施瑶, 刘振鹏, 潘光, 等. 航行体梯度密度式头帽结构设计及降载性能分析[J]. 力学学报, 2022, 54(4): 939-953.
SHI Yao, LIU Zhenpeng, PAN Guang, et al. Structural design and load reduction performance analysis of gradient density head cap of vehicle body[J]. Acta Mechanica Sinica, 2022, 54(4): 939-953.
[9] CHUANG S L. Experiments on flat-bottom slamming[J]. Journal of Ship Research, 1966, 10(1): 10-17.
[10] HUERA-HUARTE F J, JEON D, GHARIB M. Experimental investigation of water slamming loads on panels[J]. Ocean Engineering, 2011, 38(11-12): 1347-1355.
[11] OKADA S, SUMI Y. On the water impact and elastic response of a flat plate at small impact angles[J]. Journal of Marine Science and Technology, 2000, 5: 31-39.
[12] 张学广, 边金尧, 方世武. Д形圆柱体大角度撞水载荷计算及缓冲问题的研究[J]. 中国舰船研究, 2007(10): 30-32+41.
ZHANG Xueguang, BIAN Jinyao, FANG Shiwu. Calculation of water impact load and buffer problem of Д-shaped cylinder at large angle[J]. Chinese Journal of Ship Research, 2007(10): 30-32+41.
[13] 张健, 尤恽, 王珂, 等. 基于气垫效应的二维楔形体入水砰击载荷预报方法研究[J]. 舰船科学技术, 2016, 38(3): 7-12.
ZHANG Jian, YOU Yun, WANG Ke, et al. Research on two-dimensional wedge body slamming load prediction method based on air cushion effect[J]. Ship Science and Technology, 2016, 38(3): 7-12.
[14] 潘龙, 王焕然, 姚尔人, 等. 头部喷气平头圆柱体人水缓冲机制研究[J]. 工程热物理学报, 2015, 36(8): 1691-1695.
PAN Long, WANG Huanran, YAO Erren, et al. Study on human water buffer mechanism of head jet flat-headed cylinder[J]. Journal of Engineering Thermophysics, 2015, 36(8): 1691-1695.
[15] 赵海瑞, 施瑶, 潘光. 头部喷气航行器高速入水空泡特性数值分析[J]. 西北工业大学学报, 2021, 39(4): 810-817.
ZHAO Hairui, SHI Yao, PAN Guang. Numerical analysis of high-speed cavitation characteristics of head jet vehicle[J]. Journal of Northwestern Polytechnical University, 2021, 39(4): 810-817.
[16] JIANG Yunhua, SHAO Siyao, HONG Jiarong. Experimental investigation of ventilated supercavitation with gas jet cavitator[J]. Physics of Fluids, 2018, 30(1): 012103.
[17] JIANG Yunhua, BAI Tao, GAO Ye. Formation and steady flow characteristics of ventilated supercavity with gas jet cavitator[J]. Ocean Engineering, 2017, 142: 87-93.
[18] SPEIRS N B, BELDEN J, PAN Z, et al. The water entry of a sphere in a jet[J]. Journal of Fluid Mechanics, 2019, 863: 956-968.
[19] 刘华坪, 余飞鹏, 韩冰, 等. 头部喷气影响航行体入水载荷的数值模拟[J]. 工程热物理学报, 2019, 40(2): 300-305.
LIU Huaping, YU Feipeng, HAN Bing, et al. Numerical simulation of headjet affecting the entry load of a vehicle[J]. Journal of Engineering Thermophysics, 2019, 40(2): 300-305.
[20] 邹志辉, 李佳, 杨茂, 等. 喷气协助航行体入水空泡流动特性实验研究[J]. 弹道学报, 2022, 34(1): 1-8+97.
ZOU Zhihui, LI Jia, YANG Mao, et al. Experimental study on the flow characteristics of cavitation in the waterborne aircraft of the aircraft[J]. Journal of Ballistics, 2022, 34(1): 1-8+97.
[21] 王世晟, 鲍文春, 韩敬永, 等. 回转体头部通气入水流场演化与载荷特性数值预报研究[J]. 爆炸与冲击, 2022, 42(5): 52-62.
WANG Shisheng, BAO Wenchun, HAN Jingyong, et al. Numerical prediction of the evolution of the inlet flow field and load characteristics of the head of the gyratory body[J]. Explosion and Shock Waves, 2022, 42(5): 52-62.
[22] 魏海鹏, 辛万青, 刘华坪, 等. 不同喷气结构对航行体高速入水冲击的影响研究[J]. 宇航总体技术, 2021, 5(6): 41-46+53.
WEI Haipeng, XIN Wanqing, LIU Huaping, et al. Study on the influence of different jet structures on the impact of high-speed water entry of the aircraft[J]. Astronautical Systems Engineering Technology, 2021, 5(6): 41-46+53.
[23] ADIB M, EHTERAM M A, TABRIZI H B. Numerical and experimental study of oscillatory behavior of liquid surface agitated by high-speed gas jet[J]. Applied Mathematical Modelling, 2018, 62: 510-525.