连接器是模块化多浮体结构至关重要且最易受损的关键构件。结合模块化多浮体结构的尺度选择和连接器安全稳定的需求,基于三维非线性势流理论,考虑多体水动力耦合效应及连接器机械耦合效应,构建代表性三模块浮体结构耦合时域分析模型,重点研究典型海况下模块化多浮体结构尺度效应对连接器载荷的影响特征,揭示模块尺度效应对连接器载荷及各模块动力响应的影响机理。结果表明,大波浪周期的海况下,相同吃水下,模块连接器荷载的增大比例与模块尺度改变近似线性关系,为对应尺度模块的排水量之比;小波浪周期的海况下,相同排水下,大尺度小吃水模块的纵荡运动和连接器纵向受力更优。考虑目前船坞建造能力和各尺度模块水动力响应特征,建议尽量选用尺度较大的模块(如40 m×40 m),为模块化多浮体结构的优化设计提供借鉴。
Connectors are crucial and the most vulnerable component of modular multi- floating structure.,Based on the requirements of scale selection and connector safety and stability of modular multi-floating structure, considering both multi-body hydrodynamic coupling effect and mechanical coupling effect of connectors, a coupled time-domain analysis model of a representative three-module floating structure system is constructed based on the three-dimensional nonlinear potential flow theory. The module scale effect on the dynamic characteristic of connectors has been focused and investigated under typical sea conditions. The results show that there is an approximate linear relationship between the increase of module connector load and the change of module scale under the same draft, which is the ratio of the displacement of the corresponding scale module. the surge of the large-scale and small-draft module and the longitudinal force on the connector are better. Considering the current construction capacity of the dock and the actual hydrodynamic response characteristics of various scale modules, it is suggested to choose a large-scale module (such as 40 m×40 m) as much as possible, which can provide reference for the structural optimization design of the modular multi-floating structure.
2024,46(13): 71-76 收稿日期:2023-09-01
DOI:10.3404/j.issn.1672-7649.2024.13.013
分类号:U661.3
基金项目:国家自然科学基金资助项目(52161041);海南省自然科学基金资助项目(520RC552)
作者简介:王朝阳(1999-),男,硕士研究生,研究方向为模块化浮体连接器
参考文献:
[1] 崔维成, 吴有生, 李润培. 超大型海洋浮式结构物开发过程中需要解决的关键技术问题[J]. 海洋工程, 2000, 18(3): 1-8.
[2] 吕海宁, 杨建民, 张承懿. 半潜式超大型浮体的多刚体试验研究[J]. 船舶工程, 2004, 26(5): 33-37.
[3] ZOU M Y, CHEN S Y, ZHU L, et al. A constant parameter time domain model for dynamic modelling of multi-body system with strong hydrodynamic interaction[J]. Ocean Engineering, 2023, 268: 113376.
[4] CHEN S M, OUYANG M J, WANG Y, et al. A coupled hydrodynamic–structural model for flexible interconnected multiple floating bodies[J]. Journal of Marine Science and Engineering, 2023, 11: 813.
[5] CONSTANTINE M, EVA L, DEMOS C. Response analysis and optimum configuration of a modular floating structure with flexible connectors[J]. Applied Ocean Research, 2013, 43: 112-130.
[6] 李洪仙, 陈衍茂, 刘奇贤. 多浮体海上平台水动力响应分析[J]. 舰船科学技术, 2017, 39(19): 75-78.
LI Hongxian, CHENG Yanmao, LIU Qixian. Hydrodynamic response analysis for modules-offshore platform[J]. Ship Sencine and Tenchlogy, 2017, 39(19): 75-78.
[7] 王永恒, 汪学锋, 徐胜文, 等. 多模块超大型浮体中连接器刚度对其运动响应的影响[J]. 海洋工程, 2018, 36(4): 11-18.
[8] REN N X, ZHANG C, Øyvind Hellan, et al. Hydrodynamic analysis of a modular multi-purpose floating structure system with different outermost connector types[J]. Ocean Engineering, 2019, 176: 158-168.
[9] JING C Q, MOCTAR O, SCHELLIN T E. Hydrodynamic sensitivity of moored and articulated multibody offshore structures in waves[J]. Journal of Marine Science and Engineering, 2021, 9: 1028.
[10] 祁恩荣, 刘超, 夏劲松, 等. 超大型浮体模块柔性连接功能仿真模型试验研究[J]. 船舶力学, 2015, 19(10): 1245-1254.
[11] XIA S Y, XU D L, ZHANG H C, et al. On retaining a multi-module floating structure in an amplitude death state[J]. Ocean Engineering, 2016, 121: 134-142.
[12] 张波, 陈倩清, 赵春慧. 多模块MOB连接器动力特性研究[J]. 舰船科学技术, 2017, 39(9): 77-81+87.
ZHAN Bo, CHENG Qianqing, ZHAO Chunhui. Research on the connector’s dynamic response of MOB[J]. Ship Sencine and Tenchlogy, 2017, 39(9): 77-81+87.
[13] TENG B, LU Y, GUAN Y F, et al. Strength of hinge connector with hollow variable-section for very large floating structures[J]. Journal of Ship Mechanics, 2019, 23(3): 332-341.
[14] SHI Q X, XU D L, ZHANG H C, et al. A face-contact connector for modularized floating structure[J]. Marine Structures, 2022, 82: 103149.
[15] XU D L, ZHANG H C, XIA S Y, et al. Nonlinear dynamic characteristics of a multi-module floating airport with rigid-flexible connections[J]. Journal of Hydrodynamics, 2018, 30(5): 815-827.
[16] Ansys, Inc. Ansys AQWA Uer’s Manual[R]. (Release 13.0), 2010.
[17] 李延巍, 莫文渊, 任年鑫, 等. 人工鱼礁-波浪能模块化浮体耦合动力响应分析[J]. 太阳能学报, 2022, 43(12): 489-494.