欠驱动船舶容易受到风、浪、洋流等外部环境因素的影响,导致航向偏离、船体摇晃,航行安全风险增加,为提高其在各种海况下的稳定性和安全性,提出混合遗传算法下欠驱动船舶航向保持控制方法。构建欠驱动船舶数学模型描述其动态行为,设计包含跟踪微分器和分数阶滑膜控制器的航行保持控制器,生成期望航向的平滑过渡过程,为后者提供航向角速度和角加速度信号。以航向误差作为其输入控制量,通过设计的分数阶滑膜面和控制律实现期望航向追踪,采用混合遗传算法优化控制器参数,提高航向跟踪效果。实验结果表明:该方法可实现不同海况下船舶航向保持控制,控制效率高、航向控制超调量小。
Underactuated ships are easily affected by external environmental factors such as wind, waves, and ocean currents, leading to heading deviation, hull sway, and increased navigation safety risks. To improve their stability and safety in various sea conditions, a hybrid genetic algorithm based underactuated ship heading maintenance control method is proposed. Construct a mathematical model for underactuated ships to describe their dynamic behavior, design a navigation holding controller that includes a tracking differentiator and a fractional order sliding film controller, generate a smooth transition process for the desired heading, and provide the latter with heading angular velocity and angular acceleration signals. Using heading error as its input control variable, the desired heading tracking is achieved through a designed fractional order sliding surface and control law. The controller parameters are optimized using a hybrid genetic algorithm to improve the heading tracking effect. The experimental results show that this method can achieve ship heading control under different sea conditions, with high control efficiency and small heading control overshoot.
2024,46(13): 77-81 收稿日期:2024-03-07
DOI:10.3404/j.issn.1672-7649.2024.13.014
分类号:U664.82
作者简介:阳熠恒(2002-),男,研究方向为船舶与海洋工程
参考文献:
[1] 王文新, 刘上, 张国庆, 等. 考虑舵机故障的船舶鲁棒自适应航向保持控制[J]. 中国舰船研究, 2023, 18(1): 116-123.
WANG Wenxin, LIU Shang, ZHANG Guoqing, et al. Robust adaptive course-keeping control of under-actuated ships with the rudder failure[J]. Chinese Journal of Ship Research, 2023, 18(1): 116-123.
[2] 储瑞婷, 刘志全. 基于FTESO和漂角补偿的船舶航向滑模控制[J]. 中国舰船研究, 2022, 17(1): 71-79.
CHU Ruiting, LIU Zhiquan. Ship course sliding mode control system based on FTESO and sideslip angle compensation[J]. Chinese Journal of Ship Research, 2022, 17(1): 71-79.
[3] 黄立文, 刘进来, 贺益雄, 等. 考虑舵机延时的船舶最优航向控制器设计[J]. 武汉理工大学学报, 2023, 45(8): 60-67.
[4] 辛博鹏, 刘顺, Yutaka WATANABE. 基于非线性反馈积分滑模控制的船舶航向自动舵设计[J]. 中国航海, 2022, 45(1): 63-65+72.
[5] 王化明, 岳彩宇, 陈林, 等. 随机波浪下基于粒子滤波算法的船舶航向控制[J]. 浙江海洋大学学报(自然科学版), 2021, 40(2): 148-155.
[6] LI G , ZHANG X. Green energy-saving robust control for ship course-keeping system based on nonlinear switching feedback[J]. Ocean Engineering, 2023, 268(15): 1-10.
[7] ISLAM M M , SIFFAT S A , AHMAD I , et al. Supertwisting and terminal sliding mode control of course keeping for ships by using particle swarm optimization[J]. Ocean engineering, 2022, 266(12), 1-13.
[8] 吴雪琴. 基于混合遗传算法的无人船自动航向控制方法[J]. 船舶工程, 2020, 42(11): 114-117.
WU Xueqin. Automatic course control method of unmanned ship based on hybrid genetic algorithm[J]. Ship Engineering, 2020, 42(11): 114-117.
[9] 陈卓, 金建海, 张波, 等. 基于多策略免疫遗传算法的无人艇航向自适应控制[J]. 船舶力学, 2023, 27(9): 1273-1282.
CHEN Zhuo, JIN Jianhai, ZHANG Bo, et al. Adaptive control method of unmanned surface vehicle course based on MSFIGA algorithm[J]. Journal of Ship Mechanics, 2023, 27(9): 1273-1282.
[10] 王永鼎, 钱莹娟. 基于混合遗传算法的叶片偏角优化设计[J]. 机械强度, 2021, 43(4): 849-855.