为解决船舶推进电机传统预测控制中涉及的权重系数的整定和优化问题,以及推进电机在预测控制下的无速度传感器问题,提出使用自适应预测磁链控制。首先分析预测转矩控制的控制性能和原理,并将改控制方式中的以控制磁链和转矩为目的转化为对等效定子磁链的控制,从而形成预测磁链控制;同时引入自适应控制算法以实现电机的无速度传感器控制;最后对推进电机的传统控制方式和自适应预测磁链控制进行仿真对比研究。预测磁链控制可以成功消除对权重系数的整定工作及其影响,且有着很好的启动性能、减少了谐波分量、降低了磁链和转矩脉动。同时,自适应控制算法对各个工况的转速观测精度都很高。自适应预测磁链控制对异步电机有着优良的控制效果,且具有很好的稳态特性和鲁棒性,可提高船舶推进电机的控制性能。
To solve the problem of rectification and optimization of weight coefficients involved in the conventional predictive control of ship propulsion motors and the problem of propulsion motors without speed sensors under predictive control, the use of adaptive predictive flux control is proposed. Firstly, the control performance and principle of predictive torque control are analyzed, and the change of the control method to control the flux and torque is transformed into the control of the equivalent stator flux, thus forming the predictive flux control; at the same time, the adaptive control algorithm is introduced to realize the speed sensor-free control of the motor; finally, a simulation comparison study between the traditional control method and the adaptive predictive flux control of the propulsion motor is conducted. The predictive flux control can successfully eliminate the rectification work on the weighting coefficients and their effects, and has good starting performance, reduced harmonic components, reduced flux and torque pulsation. At the same time, the adaptive control algorithm has a high accuracy of speed observation for all operating conditions. The adaptive predictive flux control has excellent control effect on asynchronous motor and has good steady-state characteristics and robustness, which can improve the control performance of ship propulsion motor.
2024,46(13): 86-92 收稿日期:2023-09-04
DOI:10.3404/j.issn.1672-7649.2024.13.016
分类号:U665
作者简介:吴启洋(1999-),男,硕士研究生,研究方向为船舶电气自动化
参考文献:
[1] 刘恩东, 高岚, 罗永吉, 等. 船舶电力推进系统VC与DTC调速控制策略建模与仿真研究[J]. 舰船科学技术, 2017, 39(6): 88-93.
LIU Endong, GAO Lan, LUO Yongji, et al. Research on modeling & simulation analysis of marine electric propulsion system of VC/DTC speed control strategy[J]. Ship Science and Technology, 2017, 39(6): 88-93.
[2] TOBIAS G, GEORGIOS P. Direct torque control for lnduction motor drives: a model predictive control approach based on feasibility[J]. Hybrid Systems: Computation and Control. 2005, 3414: 274–290.
[3] 薛亚茹. 感应电机模型预测电流控制研究[D]. 北京: 北京交通大学, 2021.
[4] 胡云飞, 高岚, 徐合力, 等. 船舶永磁同步电机模型预测转矩控制[J]. 中国航海, 2019, 42(2): 27-31.
[5] VAZQUEZ S, RODRIGUEZ J, RIVERA M, et al. Model predictive control for power converters and drives: advances and trends[J]. IEEE Transactions on Industrial Electronics. 2017. Vol. 64(2): 935–947.
[6] 王利辉, 基于参数辨识的永磁同步电机预测控制研究[D]. 徐州: 中国矿业大学, 2020.
[7] 郭燚, 王超, 解文祥. 用于船舶永磁推进电机驱动控制的MMC模型预测方法[J]. 中国舰船研究, 2021, 6 (4): 179–189+198.
[8] 李英帅, 基于多相异步电动机的船舶电力推进系统研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
[9] 刘乐. 船舶电力推进系统性能仿真研究与软件实现[D]. 武汉: 武汉理工大学, 2018.
[10] 高岚, 朱师伦, 胡云飞. 基于MPTC的船舶推进电机新型SMO[J]. 船舶工程, 2019, 41(8): 73-78,83.
[11] HABIBULLAH M, DYLAN D, DAN X, et al. Low complexity predictive torque control strategies for a three-level inverter driven induction motor[J]. IET Electric Power Applications, 2017, 11(5): 776-783.
[12] 谢昊天, 汪凤翔, 柯栋梁, 等. 基于集成优化的感应电机无权重系数预测转矩控制[J]. 电工技术学报2022, 37 (12): 2992–3003.
[13] ZHANG Yongchang, YANG Haitao. Model predictive control of lnduction motor drives: flux control versus torque control[J]. ICPE(ISPE), 2015: 86–91.
[14] GEYER T. Algebraic tuning guidelines for model predictive torque and flux control[J]. IEEE Transactions on Industry Applications, 2018, 54(5): 4464-4475.
[15] DRAGIDEVIC T, NOVAK M. Weighting factor design in model predictive control of power electronic converters: n artificial neural network approach[J]. IEEE Transactions on industrial Electronics, 2019, 66(11): 8870-8880.
[16] 魏玉春, 夏长亮, 刘涛. 两电机转矩同步系统有限集模型预测控制[J]. 电工技术学报2016, 31(19): 115–122.
[17] ROJAS C, RODRIGUEZ J, VILLARROEL F, et al. Predictive torque and flux control without weighting factors[J]. IEEE Transactions on Industrial Electronics, 2013, 60(2): 681-690.
[18] HA Jung-lk, SUL Seung-Ki. Sensorless field-orientation control of an induction machine by high-frequency signal injection[J]. IEEE Transactions on Industry Applications, 1999, 35(1): 45-51.
[19] 陈晓霖. 异步电机无速度传感器低速运行高性能控制技术研究[D]. 青岛: 山东科技大学, 2018.