活塞作为柴油机关键部件之一,通过台架试验评估其使用寿命成本昂贵,因此为分析某型号国产研制改进后的柴油机活塞在热-机负荷作用下的疲劳寿命,以该V型增压柴油机的活塞为研究对象,建立活塞连杆机构装配体有限元模型,计算了活塞在热载荷下的温度分布和热-机耦合作用下的应力分布。在此基础上,将实测的柴油机$ p-\varphi $示功图进行ASCII转码后作为疲劳载荷,采用名义应力法计算出活塞在4种典型存活率要求下的疲劳寿命。计算结果表明,由于活塞头部工作环境恶劣、头部和裙部的接触面受螺栓预紧力挤压,使得活塞的短寿命区出现在燃烧室侧壁面与活塞裙顶部截面突变处;活塞裙部疲劳寿命满足厂商设计使用寿命45000 h,活塞头部仅在特定存活率下满足设计使用寿命45000 h。
As one of the key components of a diesel engine, the piston's evaluation of its service life through bench testing is costly. Therefore, in order to analyze the fatigue life of a domestically developed and improved diesel engine piston under thermal and mechanical loads, a research was conducted on the piston of a V-type turbocharged diesel engine. A finite element model of the piston-connecting rod assembly was established, and the temperature distribution of the piston under thermal loads and the stress distribution under thermal-mechanical coupling were calculated. Based on this, the measured diesel engine p-φ indicator diagram was ASCII encoded and used as the fatigue load. The nominal stress method was employed to calculate the fatigue life of the piston under four typical survival rate requirements. The results indicate that due to the harsh working environment at the top of the piston and the compression of the contact surface between the top and skirt by the bolt preload, the piston's short life zone appears at the juncture between the combustion chamber side wall and the top section of the piston skirt. The fatigue life of the piston skirt meets the manufacturer's design service life requirement of 45,000 hours, while the piston head only meets the design service life of 45,000 hours under specific survival rate conditions.
2024,46(13): 93-101 收稿日期:2023-08-30
DOI:10.3404/j.issn.1672-7649.2024.13.017
分类号:TK422
基金项目:工信部高技术船舶专项资助项目(CBG5N21-3-5 )
作者简介:贺玉海(1976-),男,博士,教授,研究方向为内燃机电子控制技术
参考文献:
[1] 冯国增, 陈峥嵘, 冯拥军. 救生艇用2105柴油机活塞温度场数值计算与分析[J]. 舰船科学技术, 2009, 31(11): 102-105.
FENG Guozeng, CHEN Zhengrong, FENG Yongjun. Temperature field numerical simulation and analysis research on piston of 2105 diesel engine[J]. Ship Science and Technology, 2009, 31(11): 102-105.
[2] 史成荫, 胡磊, 周振. 热机耦合下低速柴油机活塞蠕变-疲劳寿命[J]. 内燃机学报, 2022, 40(4): 357-363.
SHI Chengyin, HU Lei, ZHOU Zhen. Creep-fatigue lifetime of a low-speed diesel engine piston based on themo-mechanical coupling[J]. Transactions of CSICE, 2022, 40(4): 357-363.
[3] 何盼攀, 刘建敏, 王普凯, 等. 基于瞬态分析的柴油机活塞疲劳寿命预测[J]. 车用发动机, 2017(5): 57-63.
HE Panpan, LIU Jianmin, WANG Pukai, et al. Prediction of fatigue life for diesel engine piston based on transient analysis[J]. Vehicle Engine, 2017(5): 57-63.
[4] 梁刚. 中速大功率柴油机组合活塞的有限元分析[D]. 上海: 上海交通大学, 2007.
[5] 赖菲. 全钢活塞的热机耦合仿真分析及疲劳寿命预测[D].太原: 中北大学, 2015.
[6] 纪春玲. 柴油机缸盖气侧传热模型及适应性研究[D]. 济南: 山东大学, 2016.
[7] 楼狄明, 张志颖, 王礼丽. 机车柴油机组合活塞的换热边界条件及热负荷[J]. 同济大学学报(自然科学版), 2005, 33(5): 664-667.
LOU Diming, ZHANG Zhiying, WANG Lili. Heat transfer boundary condition and thermal load of combined-piston for locomotive diesel engines[J]. Journal of Tongji University(Natural Science), 2005, 33(5): 664-667.
[8] 周龙保. 内燃机学[M]. 北京: 机械工业出版社, 2017.
[9] 冯立岩, 范立云, 隆武强, 等. 柴油机活塞组耦合模型有限元分析[J]. 汽车工程, 2004, 26(2): 153-156.
FENG Liyan, FAN Liyun, LONG Wuqiang, et al. Finite element analysis on a coupled model for piston assembly of a diesel engine[J]. Automotive Engineering, 2004, 26(2): 153-156.
[10] 宋研研, 高国栋. 船用柴油机活塞热机耦合分析及其优化设计[J]. 船舶工程, 2022, 44(6): 71-77.
SONG Yanyan, GAO Guodong. Dual field coupling analysis and optimization design of marine diesel engine piston[J]. Ship Engineering, 2022, 44(6): 71-77.
[11] 姬亚萌, 张卫正, 原彦鹏, 等. 高强化柴油机活塞加速热疲劳与等效寿命评估方法[J]. 兵工学报, 2022, 43(12): 3008-3019.
JI Yameng, ZHANG Weizheng, YUAN Yanpeng, et al. Study on equivalent and influence law of accelerated thermal fatigue life of aluminum alloy piston in highly strengthened diesel engine[J]. Acta Armamentarii, 2022, 43(12): 3008-3019.
[12] 张承维, 肖兵, 郭华华, 等. 基于活塞热机耦合仿真的柴油-天然气双燃料发动机替代率研究[J]. 车用发动机, 2016(3): 71-78.
ZHANG Chengwei, XIAO Bing, GUO Huahua, et al. Research on replacement rate of diesel and natural gas dual fuel engine based on thermo-mechanical coupling of piston[J]. Vehicle Engine, 2016(3): 71-78.
[13] 谢祖成. 基于仿真加速试验和数理统计的活塞可靠性研究[D]. 济南: 山东大学, 2017.
[14] 田城. YC6MK375N-30型CNG发动机活塞热—机耦合分析与疲劳寿命预测[D]. 武汉: 武汉理工大学, 2013.
[15] 陈永哲. 基于数据分析的发动机活塞可靠性研究[D]. 济南: 山东大学, 2015.
[16] 潘尚君. 柴油机活塞多场应力仿真及疲劳寿命预测研究[D]. 南京: 南京工业大学, 2015.
[17] 田帆. 大功率柴油机活塞热-机械载荷耦合作用下有限元计算分析[D]. 武汉: 华中科技大学, 2020.
[18] 李坤颖, 肖兵, 张承维. 进气温度对柴油-天然气双燃料发动机活塞温度及热变形的影响[J]. 内燃机工程, 2015, 36(5): 115-121.
LI Kunying, XIAO Bing, ZHANG Chengwei. Effects of intake air temperature on piston temperature and thermal deformation in a diesel-natural gas dual fuel engine[J]. Chinese Internal Combustion Engine Engineering, 2015, 36(5): 115-121.
[19] 王浩宇, 徐建安, 曲东越. 某船用柴油机活塞件疲劳寿命预测及损伤演化分析[J]. 内燃机工程, 2020, 41(6): 86-94.
WANG Haoyu, XU Jianan, QU Dongyue. Fatigue life prediction and damage evolution analysis of marine diesel engine pistons[J]. Chinese Internal Combustion Engine Engineering, 2020, 41(6): 86-94.
[20] 刘建敏, 何盼攀, 王普凯, 等. 柴油机活塞瞬态温度场有限元分析[J]. 装甲兵工程学院学报, 2017, 31(2): 44-47.
LIU Jianmin, HE Panpan, WANG Pukai, et al. FEA on transient temperature field of diesel engine piston[J]. Journal of Academy of Armored Force Engineering, 2017, 31(2): 44-47.
[21] 赵少汴. 抗疲劳设计手册[M]. 北京: 机械工业出版, 1994.