水下航行器由于其功能多样性的需求,发展形成了各式各样的附体结构,这些附体结构在满足特定功能的同时可能会改变航行器的外流场特性。本文针对某水下航行器,采用数值计算方法分析附体结构对于航行器的阻力影响,在此基础上设计几种导流型附体结构,获得各个附体结构的减阻效果,其中最优方案阻力降低达19.7%,通过可视化手段分析其流场的压力、速度以及三维涡结构分布。通过上述研究工作,明确了水下航行器附体结构外流场特性,为航行器附体结构的设计与优化提供了有益参考。
Underwater vehicles have developed various appendage structures due to their functional diversity requirements. These appendages may change the characteristics of external flow field while meeting specific functions. For an underwater vehicle, this paper uses numerical calculation methods to analyze the influence of appendage structure on the resistance of the underwater vehicle. On this basis, several kinds of diversion appendage structures are designed, and the effects on drag reduction of each model are obtained. The drag of the optimal solution can be reduced by 19.7%. The distribution of pressure, velocity and three-dimensional vortex structure of the flow field are analyzed in detail through visualization methods. Through the above research work, the characteristics of the external flow field of the appendage structure of underwater vehicle are clarified, which provides a useful reference for the design and optimization of the appendage structure of underwater vehicle.
2024,46(13): 114-118 收稿日期:2023-07-27
DOI:10.3404/j.issn.1672-7649.2024.13.020
分类号:TJ630.2;TV131.2
基金项目:装备预先研究项目(3020702010101)
作者简介:王梦豪(1994-),男,硕士,工程师,研究方向为水下航行器流体动力
参考文献:
[1] 姚蓝, 陈燕. 发展UUV装备的几个问题[J]. 声学技术, 2011, 30(1): 1-8.
YAO Lan, CHEN Yan. Discussions on development of UUV Equipment[J]. Technical Acoustics, 2011, 30(1): 1-8.
[2] ALLEN B, VORUS W S, PRESTERO T. Propulsion system performance enhancements on REMUS AUVs[C]// IEEE Oceans, 2000: 1869-1873.
[3] WANG Yaxing, GAO Ting, PANG Yongjie, et al. Investiga-tion and optimization of appendage influence on the hy-drodynamic performance of AUVs[J]. Journal of Marine Science and Technology, 2019, 24(1): 297-305.
[4] 柏铁朝, 卢锦国. 附体对潜艇阻力及尾部伴流场的影响[J]. 舰船科学技术, 2013, 35(3): 47-51.
BAI Tiechao, LU Jinguo. Analysis of the impact of ap-pendages on submarine resistance and wake flow field[J]. Ship Science and Technology, 2013, 35(3): 47-51.
[5] 倪守隆, 杜礼明, 于德壮. 声呐导流罩关键结构参数对航行阻力的影响[J]. 舰船科学技术, 2015, 37(1): 50-55.
NI Shoulong, DU Liming, YU De-zhuang. Effect of key structure parameters for sonar dome on sailing re-sistance[J]. Ship Science and Technology, 2015, 37(1): 50-55.
[6] LIU Qiumei, GAO Xin. Research on the virtual reality of impact of appendages on the flow characteristics of submarines based on neural networks and CFD[J]. Neural Computing & Applications, 2018, 29: 1293-1301.
[7] 李创兰. 基于动网格的船舶及其附体阻力预报研究[D]. 哈尔滨: 哈尔滨工程大学, 2015.
[8] BULL P. The validation of CFD predictions of nominal wake for the suboff fully appended submarine geometry[C]// Proceeding of 21st Symposium on Naval Hydrodynamics. Trondheim, Norway: Defence Research Agency, 1996.
[9] 杨琼方, 王永生, 张志宏. 全附体潜艇粘性流场的RANS模拟及场量和涡量的校验分析[J]. 计算力学学报, 2012, 29(4): 567-573.
YANG Qiongfang, WANG Yongsheng, ZHANG Zhihong. RANS simulation of viscous flow over full appended submarine and field variables validation and vorticity analysis[J]. Chinese Journal of Computational Mechanics, 2012, 29(4): 567-573.
[10] LIU Han-Lieh, HUANG Thomas T. Summary of DARPA suboff experimental program data[R] Naval Surface Warfare Center, Carderock Division (NSWCCD), 1999.