为了提高船舶的自主控制能力和运行效率,研究图像处理技术在船舶智能控制器中的应用。利用摄像机采集船舶图像,获取持续更新的船舶序列图像。采用大津法确定船舶目标提取阈值,利用背景差分法提取船舶图像目标。从船舶图像目标中,提取船舶位置、船舶尺寸、船舶航向角、船舶航行速度,作为船舶智能控制的运动态势参数。利用船舶运动态势参数中的位置矢量与速度矢量,构建船舶的动力学模型、船舶的积分滑模控制面,设计船舶智能控制器,实现船舶航行的智能控制。实验结果表明,采用该方法控制船舶,船舶的实际舵角与期望舵角相差较小,可有效提升船舶的自主控制能力。
In order to improve the autonomous control capability and operational efficiency of ships, the application of image processing technology in ship intelligent controllers is studied. Use a camera to capture ship images and obtain continuously updated ship sequence images. The Otsu method is used to determine the threshold for extracting ship targets, and the background difference method is used to extract ship image targets. Extract ship position, ship size, ship heading angle, and ship sailing speed from ship image targets as motion state parameters for intelligent ship control. By utilizing the position vector and velocity vector in the ship motion situation parameters, a dynamic model of the ship is constructed, and an integral sliding mode control surface of the ship is designed. An intelligent controller for the ship is designed to achieve intelligent control of ship navigation. The experimental results show that using this method to control the ship, the actual rudder angle of the ship is relatively small compared to the expected rudder angle, effectively improving the ship's autonomous control ability.
2024,46(13): 158-161 收稿日期:2024-03-12
DOI:10.3404/j.issn.1672-7649.2024.13.028
分类号:U676
作者简介:田景娜(1981-),女,硕士,副教授,研究方向为三维动画设计
参考文献:
[1] 周慧, 李迎秋, 陈澎, 等. 基于改进FPN的复杂场景下SAR图像船舶目标检测[J]. 大连海事大学学报, 2022, 48(4): 76-83.
ZHOU Hui, LI Yingqiu, CHEN Peng, et al. Ship target detection with SAR images in complex scenes based on improved feature pyramid network[J]. Journal of Dalian Maritime University, 2022, 48(4): 76-83.
[2] 李凯, 于洪亮, 徐轶群, 等. 基于光学遥感影像的船舶目标识别[J]. 中国航海, 2022, 45(1): 95-100.
LI Kai, YU Hongliang, XU Yiqun, et al. Ship target recognition from optical remote sensing image[J]. Navigation of China, 2022, 45(1): 95-100.
[3] 刘佳仑, 谢玲利, 李诗杰, 等. 面向船舶智能航行测试的变稳船控制系统设计[J]. 中国舰船研究, 2023, 18(3): 38-47+74.
LIU Jialun, XIE Lingli, LI Shijie, et al. Design of variable stability ship control system for ship intelligent navigation test[J]. Chinese Journal of Ship Research, 2023, 18(3): 38-47+74.
[4] SCHLLER F E T, NALPANTIDIS L, BLANKE M. Buoy light pattern classification for autonomous ship navigation using recurrent neural networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 9455-9465.
[5] 余文曌, 韩素敏, 徐海祥, 等. 智能船舶路径跟踪自抗扰模型预测控制[J]. 华中科技大学学报(自然科学版), 2023, 51(4): 55-61.
YU Wenzhao, HAN Sumin, XU Haixiang, et al. Auto disturbance rejection model predictive control for intelligent ship' path following[J]. Journal of Huazhong University of Science and Technology(Nature Science Edition), 2023, 51(4): 55-61.
[6] 李男, 叶晓东, 王昊, 等. 基于改进YOLOv5的复杂场景下SAR图像船舶检测方法[J]. 信号处理, 2022, 38(5): 1009-1018.
LI Nan, YE Xiaodong, WANG Hao, et al. A ship detection method for sar images in complex scene based on improved YOLOv5[J]. Journal of Signal Processing, 2022, 38(5): 1009-1018.