本文主要通过数值模拟方法对不同叶轮叶片结构参数的模型泵进行研究,分析叶片攻角、叶片拱度、叶片侧斜角度、叶片纵斜角度对水力性能和空化性能的影响规律。结果表明,随着攻角增大,扬程总体呈上升趋势,减小攻角能使高效工况范围往小流量方向偏移,增大攻角能使高效工况范围向大流量方向偏移,攻角减小时扬程升高但临界空化余量增大,空化性能变差,攻角增大时扬程和空化余量都有所下降。随着相对拱度增大,泵扬程增加,增加幅度随流量增大而变大,小于设计流量的工况效率变化不大,大于设计流量的工况随着相对拱度增大而提升,提升幅度随流量增加而增大,但空化余量有小幅降低,空化性能有所提升。随着叶轮叶片侧斜角度增大,扬程和效率都有所下降,设计点的临界空化余量有所下降,空化性能变好。随着纵斜角度增大,大流量工况的扬程及效率下降,高效区向小流量区域偏移,空化余量却有所增大,空化性能降低。
The research primarily involves the study of model pumps with different impeller blade structural parameters using numerical simulation methods. It analyzes the effects of blade angle of attack, blade curvature, blade skew angle, and blade lean angle on hydraulic performance and cavitation performance. The results indicate the following trends: As the angle of attack increases, the head generally increases. Decreasing the angle of attack shifts the efficient operating range towards lower flow rates, while increasing it shifts the efficient operating range towards higher flow rates. Decreasing the angle of attack increases the head and critical cavitation margin but worsens cavitation performance. Increasing the angle of attack results in a decrease in both head and cavitation margin. With an increase in relative curvature, the pump head increases, and the magnitude of the increase becomes larger as the flow rate increases. Efficiency changes little for conditions below the design flow rate, but for conditions above the design flow rate, efficiency increases with increasing relative curvature. However, there is a slight decrease in cavitation margin, leading to an improvement in cavitation performance. Increasing the blade skew angle leads to a decrease in head and efficiency, and the critical cavitation margin at the design point decreases, indicating improved cavitation performance. Increasing the blade lean angle results in a decrease in head and efficiency for high-flow conditions, shifting the efficient range towards lower flow rates. However, cavitation margin increases, indicating a decrease in cavitation performance.
2024,46(14): 1-7 收稿日期:2023-09-25
DOI:10.3404/j.issn.1672-7649.2024.14.001
分类号:TH312
基金项目:国家自然科学基金重点项目(U20A20292);中国博士后科学基金资助项目(2023M733355);国家自然科学青年基金资助项目(51906085);机械系统与振动国家重点实验室课题资助项目(MSV202203);教育部“春晖计划”合作科研项目(202201691)
作者简介:万初瑞(1985-),男,博士,高级工程师,研究方向为船舶推进器及水动力学。
参考文献:
[1] 王立祥. 喷水推进及喷水推进泵[J]. 通用机械, 2007(10): 12-15.
[2] 王立祥. 船舶喷水推进[J]. 船舶, 1997(3): 45-52.
[3] 金平仲, 王立祥. 喷水推进在中国高性能船艇上的应用[J]. 船舶工程, 1988(6): 3-9+1.
[4] PARK W G, JANG J H, CHUN H H, et al. Numerical flow and performance analysis of waterjet propulsion system[J]. Ocean Engineering, 2005, 32(14–15): 1740-1761.
[5] 郭军, 孟堃宇, 陈作钢, 等. 基于CFD的喷水推进器流道与喷口优化[J]. 中国造船, 2021, 62(1): 97-109.
[6] 吴娜, 王志东, 吕红皊, 等. 喷水推进器进水流道流动性能的数值分析[J]. 舰船科学技术, 2015, 37(9): 62-67.
WU Na, WANG Zhidong, LV Hongling, et al. Numerical analysis of flow properties of waterjet propulsion inlet duct [J]. Ship Science and Technology, 2015, 37(9): 61-66.
[7] 史俊, 冯学东, 李光琛, 等. 进口长度对船舶喷水推进器进水流道性能的影响[J]. 船海工程, 2016, 45(6): 81-88.
[8] 张文, 苏石川, 冯学东, 等. 进水口面积对喷水推进进水流道流动性能影响[J]. 江苏科技大学学报(自然科学版), 2016, 30(1): 39-44.
[9] 王绍增, 王永生, 丁江明. 喷水推进器进水流道及其格栅的优化设计研究[J]. 船舶力学, 2014, 18(4): 357-362.
[10] 魏应三, 王永生. 喷水推进器进水流道不均匀度统一描述[J]. 武汉理工大学学报, 2009, 31(8): 159-163.
[11] 魏应三, 王永生, 丁江明. 喷水推进器进水流道倾角与流动性能关系研究[J]. 舰船科学技术, 2009, 31(4): 48-55.
WEI Yingsan, WANG Yongsheng, DING Jiangming. Research on effect of inclination on characteristics of waterjet duct [J]. Ship Science and Technology, 2009, 31(4): 48-53.
[12] 丁江明, 王永生. 喷水推进器进水流道参数化设计与应用[J]. 上海交通大学学报, 2010, 44(10): 1023-1028.
[13] 韩伟, 胥丹丹, 郭威, 等. 轴向间隙对对旋式喷水推进泵水力特性的影响[J]. 推进技术, 2019, 40(9): 2144-2152.
[14] 常书平, 李昆鹏. 导边与随边设计对喷水推进泵性能的影响[J]. 船舶工程, 2019, 41(5): 25–28.
[15] 常书平, 王永生, 丁江明, 等. 混流式喷水推进器的性能试验与数值计算[J]. 哈尔滨工程大学学报, 2012, 33(5): 660-664.
[16] LU Y, WANG X, LIU H, et al. Analysis of the impeller's tip clearance size on the operating characteristics of the underwater vehicle with a new high-speed water jet propulsion pump[J]. Ocean Engineering, 2021, 236(15): 1–16.
[17] 张岩, 王路逸, 钟锦情, 等. 多参数优化设计对喷水推进组合体水力性能的影响[J]. 排灌机械工程学报, 2021, 39(7): 655-662.
[18] 张天行, 李金鹏. 基于正交试验的喷水推进器参数优化设计[J]. 船舶工程, 2019, 41(5): 29-33.
[19] 郝宗睿, 李超, 任万龙, 等. 基于改进粒子群算法的喷水推进泵叶片优化设计[J]. 排灌机械工程学报, 2020, 38(6): 566-570.
[20] 黄仁芳, 王一伟, 罗先武, 等. 平进口喷水推进器进水流道多目标优化设计[J]. 华中科技大学学报(自然科学版), 2021, 49(10): 109-114.
[21] 蔡佑林, 范佘明, 陈刚, 等. 喷水推进收缩流泵导叶的水动力优化设计方法[J]. 上海交通大学学报, 2020, 54(1): 28-34.
[22] XU S, LONG X P, JI B, et al. Vortex dynamic characteristics of unsteady tip clearance cavitation in a waterjet pump determined with different vortex identification methods[J]. Journal of Mechanical Science and Technology, 2019, 33(12): 5901-5912.
[23] HAN C Z, XU S, CHENG H-Y, et al. LES method of the tip clearance vortex cavitation in a propelling pump with special emphasis on the cavitation-vortex interaction[J]. Journal of Hydrodynamics, 2020, 32(6): 1212-1216.
[24] TAN D, LI Y, WILKES I, et al. Visualization and time-resolved particle image velocimetry measurements of the flow in the tip region of a subsonic comperssor rotor[J]. Joumal of Turbomachinery, 2015, 137(4): 28–33.
[25] 龙云. 喷水推进泵水力优化设计方法及空化研究[D]. 上海: 上海交通大学, 2018.
[26] 龙云, 冯超, 王路逸, 等. 喷水推进泵临界空化工况空化流态试验[J]. 北京航空航天大学学报, 2019, 45(8): 1512-1518.
[27] LONG Y, AN C, ZHU R, et al. Research on hydrodynamics of high velocity regions in a water-jet pump based on experimental and numerical calculations at different cavitation conditions[J]. Physics of Fluids, 2021, 33(4): 045124.
[28] LONG Yun, ZHU Rongsheng, WANG Dezhong. A cavitation performance prediction method for pumps PART1-proposal and feasibility[J]. Nuclear Engineering and Technology, 2020, 52(11): 2471-2478.
[29] LONG Yun, ZHU Yan, CHEN Jianping, et al. A cavitation performance prediction method for pumps: Part2-sensitivity and accuracy[J]. Nuclear Engineering and Technology, 2021, 53(11): 3612-3624.