多层异质板具有良好的减振隔声性能,逐渐在船舶舱室隔振和隔声中进行推广应用。本文以船用功能梯度异质夹层板为研究对象,提出一种用于求解船用功能梯度异质夹层板在外载荷下的声辐射特性的半解析法,通过有限元和其他公开发表的理论结果验证本方法的准确性和精度。在此基础上,详细分析功能梯度异质夹层板的面板和芯材厚度、密度、弹性模量以及芯材功能梯度指数对声辐射的影响。研究结果表明,本文提出的半解析法求解软芯异质各向同性夹层板具有较高的精度,同时能够求解传统理论无法求解的功能梯度异质夹层板声辐射特性,通过数值收敛性和准确性分析,本方法在网格较少时就能很好收敛且具有较高的精度;此外,研究结果发现面板和芯材厚度、密度、弹性模量以及芯材功能梯度指数对声辐射功率有较大的影响,其中芯材功能梯度指数对声辐射影响呈现梯度变化。
Multilayer heterogeneous plates offer effective vibration and sound insulation, finding extensive use in ship compartments. This paper introduces a semi-analytical approach for analyzing the acoustic radiation characteristics of functionally graded sandwich plates under external loads. The method's accuracy is validated against finite element analysis and other published theories. We explore how core and panel properties such as thickness, density, Young’s modulus, and functional grading affect the acoustic radiation in these sandwich panels. The results indicate that our proposed semi-analytical method excels in solving soft core heterogeneous isotropic sandwich plates and can address acoustic radiation in functionally graded heterogeneous sandwich plates beyond traditional plate theory's capabilities. Convergence analysis reveals the method's effectiveness and accuracy, particularly with a small mesh. Additionally, our research demonstrates that panel and core material attributes, including thickness, density, elastic modulus, and functional grading, significantly impact acoustic radiation, with the core material's functional grading showing a gradient effect.
2024,46(14): 8-14 收稿日期:2023-09-04
DOI:10.3404/j.issn.1672-7649.2024.14.002
分类号:TB532
基金项目:国家自然科学基金资助项目(52001145);江苏省自然科学基金资助项目(BK20180976),水声技术全国重点实验室稳定支持计划资助项目(2015032308)
作者简介:张睿(1991-),男,博士,高级工程师,研究方向为船舶海洋结构与声辐射特性、基于声特性的目标运动分析
参考文献:
[1] 张辉, 张新波. 《船上噪声等级规则》修订案解析及应对措施[J]. 船舶标准化工程师, 2013, 46(1): 28-29.
[2] 李清, 杨德庆, 郁扬. 舰船低频水下辐射噪声数值计算方法对比研究[J]. 中国造船, 2017, 58(3): 114-127.
[3] 夏兆旺, 王宗耀, 温华兵, 等. 复合隔声结构声学性能研究综述[J]. 船舶工程, 2020, 42(7): 14-21.
[4] 马大猷. 噪声与振动控制工程手册[M]. 北京: 机械工业出版社, 2002.
[5] YE R, TIAN A, CHEN Y, et al. Sound transmission characteristics of a composite sandwich plate using multi-layer first-order zigzag theory[J]. Thin-Walled Structures, 2022, 179: 109607.
[6] 白聪, 沈敏. 含三聚氰胺多孔材料分层复合介质吸声特性[J]. 应用声学, 2019, 38(1): 76-84.
[7] YE R, ZHAO N, YANG D, et al. Bending and free vibration analysis of sandwich plates with functionally graded soft core, using the new refined higher-order analysis model[J]. Journal of Sandwich Structures & Materials, 2021, 23(2): 680-710.
[8] 张焱冰, 任春雨, 朱锡. 水下目标声隐身功能梯度材料的研究概况[J]. 材料导报, 2013(7): 59-62.
[9] 徐步青, 杨绍普, 齐月芹. 水中有限长功能梯度材料圆柱壳声辐射研究[J]. 石家庄铁道大学学报: 自然科学版, 2011, 24(3): 44-49.
[10] 姚熊亮, 叶曦, 王献忠. 热环境中功能梯度圆柱壳声辐射特性研究[J]. 工程力学, 2013, 30(6): 334-339.
[11] CHANDRA N, RAJA S, GOPAL K V N. Vibro-acoustic response and sound transmission loss analysis of functionally graded plates[J]. Journal of Sound and Vibration, 2014, 333(22): 5786-5802.
[12] DANESH M, GHADAMI A. Sound transmission loss of double-wall piezoelectric plate made of functionally graded materials via third-order shear deformation theory[J]. Composite Structures, 2019, 219: 17-30.
[13] XU Z, ZHANG Z, WANG J, et al. Acoustic analysis of functionally graded porous graphene reinforced nanocomposite plates based on a simple quasi-3D HSDT[J]. Thin-Walled Structures, 2020, 157: 107151.
[14] CHEN Y, LI F, HAO Y. Analysis of vibration and sound insulation characteristics of functionally graded sandwich plates[J]. Composite Structures, 2020, 249: 112515.
[15] AMIRINEZHAD H, TARKASHVAND A, TALEBITOOTI R. Acoustic wave transmission through a polymeric foam plate using the mathematical model of functionally graded viscoelastic (FGV) material[J]. Thin-Walled Structures, 2020, 148: 106466.
[16] HU Z, ZHOU K, HUANG S, et al. Sound transmission analysis of functionally graded material plates with general boundary conditions in thermal environments[J]. Applied Acoustics, 2021, 174: 107795.
[17] 杜功焕, 朱哲民, 龚秀芬. 声学基础(2版)[M]. 南京: 南京大学出版社, 2001.
[18] FAHY F J. Foundations of engineering acoustics. academic press[M]. Foundations of Engineering Acoustics, Academic Press, 2001.
[19] ELLIOTT S J, JOHNSON M E. Radiation modes and the active control of sound power[J]. The Journal of the Acoustical Society of America, 1993, 94(4): 2194-2204.
[20] MALEKZADEH K, KHALILI M R, OLSSON R, et al. Higher-order dynamic response of composite sandwich panels with flexible core under simultaneous low-velocity impacts of multiple small masses[J]. International Journal of solids and structures, 2006, 43(22-23): 6667-6687.
[21] REDDY J N. Mechanics of laminated composite plates and shells: theory and analysis[M]. CRC Press, 2003.
[22] SHENOI R A, GROVES A, RAJAPAKSE Y D S. Theory and applications of sandwich structures[J]. Pasturas Tropical, 2005, 36(5): 268–9.