为了研究自主设计的滑行艇在高速行驶状态下,船体航行状态以及运动响应对滑行艇的运动性、阻力性和耐波性的影响。试验运用建模软件Solidworks完成滑行艇的三维建模;基于RANS方程的粘流理论,利用CFD软件FINE/MARINE耦合求解六自由度运动方程。计算分析发现,该艇在航速24~32 kn之间阻力上升相对较缓,并且在重心位置后移0.2 m后,该艇在航速24~32 kn之间阻力上升总阻力依然趋于平缓;在航速30 kn以上时,纵摇与升沉的运动响应趋于相对较好的状态;当滑行艇在16倍船长的波长附近时,滑行艇的运动响应最为剧烈。本研究为该滑行艇的航速设计和航行安全策略提供了参考。
In order to investigate the effects of hull sailing state and motion response on the performance, resistance, and wave resistance of a self-designed planing craft during high-speed operation, a three-dimensional modeling of the craft was conducted using Solidworks modeling software. Based on the Reynolds-Averaged Navier-Stokes (RANS) equations and viscous flow theory, the six-degree-of-freedom motion equations were solved using the coupled Computational Fluid Dynamics (CFD) software FINE/MARINE. The computational analysis revealed that the resistance of the craft increased gradually within the range of 24 kn to 32 kn, and even after shifting the center of gravity 0.2 m aft, the total resistance of the craft remained relatively stable within the same speed range. At speeds exceeding 30 kn, the motion response of heave and pitch tended to be relatively favorable. The most significant motion response of the craft occurred when it was near a wavelength approximately 16 times the length of the craft. This study provides reference for the speed design and navigation safety strategy of the planing craft.
2024,46(14): 63-68 收稿日期:2023-09-11
DOI:10.3404/j.issn.1672-7649.2024.14.011
分类号:U661
作者简介:梁福艺(1997-),男,硕士研究生,研究方向为船舶与海洋结构物设计制造
参考文献:
[1] 高双, 朱齐丹, 李磊. 滑行艇高速运动建模与姿态控制仿真[J]. 系统仿真学报, 2008, 20(16): 4461–4465.
GAO Shuang, ZHU Qidan, LI Lei. Modeling and attitude control simulation of high-speed sailing boats[J].Journal of System Simulation, 2008, 20(16):4461–4465.
[2] 朱鑫, 段文祥, 马山, 等. 棱柱波滑行艇在规则波中迎浪运动响应的频域解[J]. 哈尔冰工程大学学报, 2012, 11(33): 1326-1333.
ZHU Xin, Duan Wenxiang, MA Shan, et al. Frequency domain solution of the head wave motion response of a prismatic wave-piercing boat in regular waves[J]. Journal of Harbin Engineering University, 2012, 11(33): 1326-1333.
[3] WU Gongxing, ZOU Jin, WEI Lei, et al. Design of the basic motion control system for water-jet-propelled unmanned surface vhicle[J]. Control Theory and Application, 2010, 27(2): 257–262.
[4] SUN Hui. A boundary element method applied to stronglynonlinear wave-body interaction problems[D]. Trondheim: Norwegian University of Science and Technology, 2007: 103–142.
[5] 董文才, 岳国强. 深V型滑行艇纵向运动试验研究[J]. 船舶工程, 2004, 26(2): 14–16.
DONG Wencai, YUE Guoqiang. Experimental study on the longitudinal motion of deep-V planing boats[J]. Ship Engineering, 2004, 26(2): 14–16.
[6] 王硕, 苏玉民, 庞永杰, 等. 高速滑行艇在规则波中的纵向运动数值研究[J]. 哈尔滨工程大学学报, 2014, 35(1): 45-52.
WANG Shuo, SU Yumin, PANG Yongjie, et al. Numerical study on the longitudinal motion of high-speed planing boats in regular waves[J]. Journal of Harbin Engineering University, 2014, 35(1): 45-52.