洋流和未知干扰的存在影响着自主水下机器人(AUV)对接回收的成功与否,同时保证对接姿态和抗扰能力较为困难。本文提出一种基于自抗扰控制的三段式对接控制方法:在对接首段采用追踪制导,中段采用横向偏差制导,末端采用余弦曲线制导生成期望的航向角度,设计洋流观测器估计并补偿洋流,并针对AUV模型设计自抗扰控制器实现航向角跟踪。在Matlab/Simulink中建立控制模型,在不同洋流和外界随机干扰条件下仿真。仿真结果表明,设计的对接方法在洋流下可有效控制AUV的航向角和横向距离,对外界随机干扰具有一定抵抗能力,能够同时保证对接姿态和抗扰能力。
The existence of ocean currents and unknown disturbances affects the success of docking recovery of autonomous underwater vehicle (AUV), and it is difficult to ensure docking attitude and anti-disturbance ability. In this paper, a three-stage docking control method based on auto-disturbance rejection control is proposed: pure pursuit guidance is adopted in the first stage of the docking, cross-track guidance is adopted in the middle stage, and cosine curve guidance is used at the end to generate the desired heading angle. An ocean current observer is designed to estimate the ocean current velocity and realize compensation, and an active disturbance rejection controller is designed for AUV model to realize heading Angle tracking. The control model is established in Matlab/Simulink and simulated under different ocean currents and external random interference conditions. The simulation results show that the designed docking method can effectively control the heading angle and lateral distance of AUV under the interference of ocean current, and has certain resistance to external random disturbance, which can ensure the docking attitude and anti- disturbance ability at the same time.
2024,46(14): 89-96 收稿日期:2023-09-15
DOI:10.3404/j.issn.1672-7649.2024.14.015
分类号:U675.91
基金项目:中科院战略性先导科技专项(A类)(XDA22040103);辽宁省自然科学基金计划面上项目(2022-MS-035)
作者简介:黄陶俊(1998-),男,硕士研究生,研究方向为水下机器人控制
参考文献:
[1] 袁学庆, 刁家宇, 李卫民, 等. AUV水下对接的发展与应用现状[J]. 舰船科学技术, 2023, 45(5): 1-8.
YUAN Xueqing, DIAO Jiayu, LI Weimin, et al. evelopment and application status of AUV underwater docking[J]. Ship Science and Technology, 2023, 45(5): 1-8.
[2] FAN S, LI B, XU W, et al. Impact of current disturbances on auv docking: model-based motion prediction and countering approaches[J]. IEEE Journal of Oceanic Engineering, 2018, 43(4): 888-904.
[3] FAN S S, LIU C Z, LI B, et al. AUV docking based on USBL navigation and vision guidance[J]. Joumal of Marine Science and Technology, 2019, 24(3): 673-85.
[4] 黄琰, 李岩, 俞建成, 等. AUV智能化现状与发展趋势[J]. 机器人, 2020, 42(2): 215-31.
[5] 李曾妮. 移动对接过程中的欠驱动AUV路径规划方法研究 [D]. 杭州: 浙江大学, 2022.
[6] 李晔, 何佳雨, 姜言清, 等. AUV归航和坐落式对接的半物理仿真[J]. 机器人, 2017, 39(1): 119-28.
[7] TEO K, AN E, BEAUJEAN P P J. A robust fuzzy Autonomous Underwater Vehicle (AUV) docking approach for unknown current disturbances[J]. IEEE Journal of Oceanic Engineering, 2012, 37(2): 143-55.
[8] PARK J Y, JUN B H, LEE P M, et al. Underwater docking approach of an under-actuated AUV in the presence of constant ocean current[J]. IFAC Proceedings Volumes, 2010, 43(20): 5-10.
[9] 杨晨宇, 刘丹, 刘璐, 等. 基于连续滑模控制的水下无人航行器航向跟踪研究[J]. 舰船科学技术, 2023, 45(12): 63-68.
YANG Chenyu, LIU Dan, LIU Lu, et al. Research on underwater submersible course tracking based on continuous sliding mode control[J]. Ship Science and Technology, 2023, 45(12): 63-68.
[10] 李冀永, 钟荣兴, 徐雪峰, 等. AUV导航-规划-控制技术研究[J]. 舰船科学技术, 2023, 45(12): 51-56.
LI Jiyong, ZHONG Rongxing, XU Xuefeng, et al. Review of navigation,planning and control technology of AUVs[J]. Ship Science and Technology, 2023, 45(12): 51-56.
[11] WU W, ZHANG W, DU X, et al. Homing tracking control of autonomous underwater vehicle based on adaptive integral event-triggered nonlinear model predictive control [J]. Ocean Engineering, 2023, 277.
[12] WU Y, XU H, JIANG Z. A modified active disturbance rejection controller based on radial basis function neural network for AUV attitude control [C]// 2022 International Conference on Advanced Robotics and Mechatronics (ICARM). 2022: 962–968.
[13] ZHANG W, WU W, LI Z, et al. Three-dimensional trajectory tracking of AUV based on nonsingular terminal sliding mode and active disturbance rejection decoupling control[J]. Journal of Marine Science and Engineering, 2023, 11(5): 959.
[14] LI H, AN X, FENG R, et al. Motion control of autonomous underwater helicopter based on linear active disturbance rejection control with tracking differentiator[J]. Applied Sciences, 2023, 13(6): 3836.
[15] 施生达, 王京齐, 吕帮俊, 等. 潜艇操纵性 [M]. 北京: 国防工业出版社, 2021.
[16] FOSSEN T I. Handbook of marine craft hydrodynamics and motion control [M]. The British Library, 2011.
[17] 王红燕. 欠驱动自主水下航行器的轨迹跟踪控制研究 [D]. 天津: 天津大学, 2019.
[18] 朱斌. 自抗扰控制入门 [M]. 北京: 北京航空航天大学出版社, 2017.
[19] ALLEN B, AUSTIN T, FORRESTER N, et al. Autonomous docking demonstrations with enhanced REMUS technology[C]// IEEE, Oceans, 2006.