电辅助涡轮增压技术(EAT)是能够有效解决传统涡轮增压发动机启动或加速时进气不足、瞬态响应差等问题,实现内燃机动力系统电气化的重要技术手段。基于流体动压轴承润滑理论结合转子运动控制方程,建立由浮环轴承支承的某型涡轮增压器转子系统动力学有限元模型并进行轴心轨迹试验,采用数值计算方法对不同轴承支撑形式的EAT正常转子和不平衡转子的非线性转子动力学特性进行深入研究。结果表明,在EAT运行较宽的转速范围内,其转子具有广泛的次同步振动,转子动力学行为复杂且浮环轴承支撑的转子明显具有更高的次同步振动振幅;半浮环轴承支撑的转子油膜涡动振动的能量远小于基频振动的能量,表现出更良好的减振作用,可以很好地抑制油膜的涡动/振荡。本文研究内容可以有效地辅助EAT的研究工作,提高其整机的NVH性能。
The technology of electrically assisted turbocharger (EAT) is an important technical means to effectively solve the problems of insufficient air intake and poor transient response when the engine is started or accelerated in the traditional turbocharger, and realize the electrification of the internal combustion engine power system. Based on the hydrodynamic bearing lubrication theory and the rotor motion control equation, the dynamic finite element model of a turbocharger rotor system supported by floating ring bearings is established and the axial trajectory test is carried out. The nonlinear rotor dynamic characteristics of normal and unbalanced rotors of electrically assisted turbochargers with different bearing support forms are deeply studied by numerical calculation method. The results show that the rotor of the electrically assisted turbocharger has a wide range of subsynchronous vibration in a wide speed range, and its dynamic behavior is complex, and the rotor supported by floating ring bearings obviously has a higher subsynchronous vibration amplitude. Because the rotation of the floating ring is limited, the energy of the whirling vibration of the oil film is much less than that of the fundamental frequency vibration, which shows a better damping effect and can well suppress the whirling/oscillation of the oil film. The research content of this paper can effectively assist the research work of electrically assisted turbocharger and improve its NVH performance.
2024,46(14): 127-133 收稿日期:2023-09-27
DOI:10.3404/j.issn.1672-7649.2024.14.021
分类号:U664.1
基金项目:高技术船舶科研项目(MP-KY/(2022)24)
作者简介:段宝印(1997-),男,博士研究生,研究方向为电辅助涡轮增压器设计及非线性转子动力学
参考文献:
[1] HUANG Liyong, MA Chaochen, LI Yanzhao, et al. Applying neural networks (NN) to the improvement of gasoline turbocharger heat transfer modeling[J]. Applied Thermal Engineering, 2018, 141: 1080–1091.
[2] 黄立, 陈晓轩, 李先南, 等. 船用柴油机涡轮增压技术发展现状[J]. 推进技术, 2020, 41(11): 2438-2449.
[3] TIAN W , DU D , LI J , et al. Establishment of a two-stage turbocharging system model and analysis on influence rules of key parameters[J]. Energies, 2020, 13(8): 1953.
[4] SUN Y , WANG H , YANG C , et al. Development and validation of a marine sequential turbocharging diesel engine combustion model based on double Wiebe function and partial least squares method[J]. Energy Conversion & Management, 2017, 151: 481–495.
[5] FENELEY A J , PESIRIDIS A , ANDWARI A M . Variable geometry turbocharger technologies for exhaust energy recovery and boosting‐a review[J]. Renewable & Sustainable Energy Reviews, 2017, 71: 959–975.
[6] 丁占铭, 程振宇, 曹晓琳, 等. 电机外置式电辅助增压器设计与试验研究[J]. 车用发动机, 2021(3): 8-13.
[7] WU C , SONG K , LI S , et al. Impact of electrically assisted turbocharger on the intake oxygen concentration and its disturbance rejection control for a heavy-duty diesel engine[J]. Energies, 2019, 12(15): 3014.
[8] 姚春德, 韩伟强, 徐广兰, 等. 电动增压器对废气涡轮增压器影响的试验研究[J]. 机械工程学报, 2012, 48(8): 188-193.
[9] KANT M , ROMAGNOLI A , MAMAT A M , et al. Heavy-duty engine electric turbocompounding[J]. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering, 2015, 229(4): 457–472.
[10] GRONMAN A , SALLINEN P , HONKATUKIA J , et al. Design and experiments of two-stage intercooled electrically assisted turbocharger[J]. Energy Conversion & Management, 2016, 111: 115–124.
[11] BIN MAMAT A M I , MARTINEZ-BOTAS R F , RAJOO S , et al. Waste heat recovery using a novel high performance low pressure turbine for electric turbocompounding in downsized gasoline engines: Experimental and computational analysis[J]. Energy, 2015, 90: 218–234.
[12] 吴超. 电辅助涡轮增压柴油机能效优化控制研究[D]. 天津: 天津大学, 2020.
[13] 滕瀚, 吴宛洋, 钟兢军. 船用发动机轴流式EAT的探索研究[J]. 推进技术, 2020, 41(11): 2577-2586.
[14] 胡超, 杨名洋, 邓康耀, 等. 机电复合增压技术研究进展综述[J]. 车用发动机, 2019(1): 1-6+5.
[15] 张克松, 王桂华, 李国祥. 电辅助涡轮增压技术的发展综述[J]. 内燃机与动力装置, 2008(2): 31-35+40.
[16] RYU K , CAVAGNARO A . Predictions of Rotordynamic Performance for Electric Turbocompound[C]//Asme Turbo Expo: Turbine Technical Conference & Exposition, 2012.
[17] 刘张飞. 电辅助涡轮增压器转子动力学特性研究[D]. 北京: 北京理工大学, 2015.
[18] LIANG F , ZHOU M , XU Q . Effects of semi-floating ring bearing outer clearance on the subsynchronous oscillation of turbocharger rotor[J]. Chinese Journal of Mechanical Engineering, 2016, 29(5): 901-910.