为了提高水下目标宽带回波的计算速度,本文提出一种基于图形处理器GPU的散射传递函数多频点快速计算解决方案。相较于传统算法中逐个频率点计算的方式,CUDA快速算法充分利用各频点处目标强度的相对独立性,基于GPU的硬件特点,同时计算宽带内的散射声场,从而显著提高了计算效率。本文以潜航器模型为算例,对不同网格数量下模型的目标散射传递函数计算速度进行对比分析。仿真结果表明,相较于传统的CPU串行计算,采用CUDA快速算法能够实现超过80的加速比,有效提高了计算速度。
In order to improve the calculation speed of broadband echoes of underwater targets, this paper proposes a solution for fast computation of the scattering transfer function at multiple frequency points based on graphics processing unit (GPU). Compared to the traditional approach of calculating each frequency point individually, the CUDA fast algorithm fully utilizes the relative independence of target intensity at different frequency points and takes advantage of the hardware characteristics of GPUs to simultaneously compute the scattering sound field within the broadband, significantly improving the computational efficiency. The cylindrical model is used as a case study in this paper to compare and analyze the calculation speed under different grid quantities. The simulation results demonstrate that, compared to traditional CPU serial computation, utilizing the CUDA fast algorithm can achieve an acceleration ratio of over 80, effectively improving the calculation speed.
2024,46(14): 153-157 收稿日期:2023-10-18
DOI:10.3404/j.issn.1672-7649.2024.14.025
分类号:TB56
基金项目:三亚崖州湾科技城科技专项资助项目(SKJC-2022-PTDX-020)
作者简介:钱浩然(1997-),男,硕士研究生,研究方向为水下目标声散射
参考文献:
[1] MARBURG S, NOLTE B. Computational acoustic of noise propagation in fluids-finite and boundary element methods coumputional aeroacoustics based on lighthill’s acoustic analogy[J]. 2008, 8(5): 115–142.
[2] QIU F L, FISHER A C. The boundary element method: applications to steady-state voltammetric simulations within domains extending to infinity[J]. Electrochemistry Communications, 2001, 3(3): 117-121.
[3] YEE K S. Numerical solution of initial boundry value problems involving equations in isotropic media Maxwell’s equations in isotropic media[J]. IEEE Transactions on. Antennas Propagate, 1966, 14(3): 302–307.
[4] LIM R, LOPES J L, HACKMAN R H, et al. Scattering by objects buried in underwater sediments: theory and experiment[J]. The Journal of the Acoustical Society of America 1993.93(4): 1762–1783.
[5] 范军, 汤渭霖. 声呐目标强度(TS)计算的板块元方法[C]//中国声学学会青年学术会议, 1999.
[6] 范军, 汤渭霖, 卓琳凯. 声呐目标回声特性预报的板块元方法[J]. 船舶力学, 2012, 16(1): 171-180.
[7] 范军, 卓琳凯. 水下目标回波特性计算的图形声学方法[J]. 声学学报, 2006, 31(6): 511-516.
[8] ZHANG Yang, YANG Yuzheng, CHAI Yingbin, et al. Graphical acoustic computing method incorporated with the shooting and bouncing ray: application to target strength prediction of concave objects with second-order reflection effects[J]. Journal of Sound and Vibration, 2022, 541.
[9] 贾波, 王斌, 范军, 等. 水下目标宽带回波特性的快速计算方法[J]. 上海交通大学学报, 2017, 51(2): 224-228.
[10] 余立志, 杨亦春, 滕鹏晓, 等. 基于图像处理器的传声器阵列实时声成像方法[J]. 声学技术, 2014, 33(4): 367-371.
[11] 吕云飞, 任云龙, 孙大军, 等. 基于GPU的FIR分数时延宽带波束形成[C]//中国声学学会2017年全国声学学术会议, 2017.