为了保证船舶的安全性,通过三维重建外点剔除进行船舶航迹自适应修正。采用均值限差法对船舶三维点云数据进行滤波处理,通过变窗口方差比值方法优化均值限差法,提升船舶三维点云滤波精度。针对滤波处理后的船舶三维点云数据,结合八叉树自适应网格对船舶进行三维重建,更准确地拟合船舶的表面形状。由此,在屏幕上投影八叉树自适应网格生成投影多边形,检测其与用户确定的矩形包围盒间的相交性,定义与矩形包围盒不相交的八叉树自适应网格内的点为外点,并将其剔除,可以更准确地计算船舶航行,完成船舶航迹自适应修正。实验结果表明,所提方法的点云滤波总误差控制在1.5%以内,可有效抑制海面杂波等因素造成的外点影响,且规划的航线与原定航线一致性较高,可以保证船舶的运行安全。
In order to ensure the safety of the ship, adaptive correction of the ship's trajectory is achieved by removing outliers through 3D reconstruction. Using the mean difference method to filter ship 3D point cloud data, optimizing the mean difference method through the variable window variance ratio method, and improving the filtering accuracy of ship 3D point cloud. Based on the filtered 3D point cloud data of ships, combined with octree adaptive mesh, the ship is reconstructed in 3D to more accurately fit the surface shape of the ship. Therefore, projecting an octree adaptive grid on the screen to generate a projection polygon, detecting its intersection with the user determined rectangular bounding box, defining points within the octree adaptive grid that do not intersect with the rectangular bounding box as outliers, and removing them can more accurately calculate ship navigation and complete adaptive correction of ship trajectories. The experimental results show that the total error of point cloud filtering in the proposed method is controlled within 1.5%, which can effectively suppress the influence of external points caused by sea clutter and other factors. Moreover, the planned route has high consistency with the original route, ensuring the safe operation of ships.
2024,46(14): 162-165 收稿日期:2024-01-17
DOI:10.3404/j.issn.1672-7649.2024.14.027
分类号:TN959
作者简介:邢建平(1969-),男,博士,教授,研究方向为导航通信监视技术、嵌入式微系统技术
参考文献:
[1] 韩成浩, 马吉林, 刘佳仑, 等. 基于虚拟仿真测试平台的船舶智能航行系统设计及应用[J]. 中国航海, 2023, 46(1): 148-154.
[2] 王海, 吴楚, 白鑫, 等. 面向仓库内货运车的低成本航迹修正定位算法[J]. 江苏大学学报(自然科学版), 2023, 44(1): 1-6.
[3] 甄绪, 刘方. 基于改进的FCM和信息熵修正的航迹融合算法[J]. 航空学报, 2022, 43(5): 412-423.
[4] 张天舒, 李寅龙. 基于对等式的系统误差修正航迹关联算法[J]. 现代雷达, 2022, 44(1): 65-70.
[5] 周敏, 张俊然, 李南欣. 基于轴向空间注意力和中间融合表示的单图像三维重建模型[J]. 半导体光电, 2023, 44(1): 122-127.
[6] 杨威, 曹金山, 张欢, 等. 拓扑结构引导的遥感影像匹配外点去除算法[J]. 激光与光电子学进展, 2022, 59(18): 427-435.
[7] 赵晶, 李少博, 郭杰龙, 等. 基于知识蒸馏和定位引导的Pointpillars点云检测网络[J]. 液晶与显示, 2024, 39(1): 79-88.
ZHAO Jing, LI Shaobo, GUO Jielong, et al. Pointpillars point cloud detection network based on knowledge distillation and location guidance[J]. Chinese Journal of Liquid Crystals and Displays, 2024, 39(1): 79-88.
[8] 刘佳嘉, 魏琪, 邓志祥. 基于匀光处理的倾斜环绕摄影实景三维建模[J]. 计算机仿真, 2023, 40(8): 53-60+205.
LIU Jiajia, WEI Qi, DENG Zhixiang. Real 3D modeling of encircled oblique photography based on homogenization processing[J]. Computer Simulation, 2023, 40(8): 53-60+205.
[9] 鲁斌, 范晓明. 基于改进自适应k均值聚类的三维点云骨架提取的研究[J]. 自动化学报, 2022, 48(8): 1994-2006.
LU Bin, FAN Xiaoming. Research on 3D point cloud skeleton extraction based on improved adaptive k-means clustering[J]. Acta Automatica Sinica, 2022, 48(8): 1994-2006.
[10] 姚程, 马彩文. 基于平面补丁的自适应八叉树三维图像重建[J]. 光学精密工程, 2022, 30(9): 1113-1122.
YAO Cheng, MA Caiwen. Adaptive octree 3D image reconstruction based on plane patch[J]. Optics and Precision Engineering, 2022, 30(9): 1113-1122.