气垫船对于噪声传递路径控制中的隔声控制,除了常规的隔声性能应满足相应要求外,还应保证其抗爆抗冲击等性能。本文对气垫船舱壁的前端抗冲击壁板进行隔声性能进行计算分析与实验测试。基于统计能量分析方法,采用双声腔-单板模型模拟驻波管设备,计算并结合实验测试验证了单层均质钢板的隔声量。为进一步验证统计能量分析方法预测材料隔声量的正确性,利用驻波管进行构件隔声量的实验研究,实验测量与统计能量分析预测结果在630 Hz以下的中低频段吻合良好,高频段随着吻合效应的出现,误差增大。结果表明,采用的统计能量分析模拟计算方法有效,该类型隔声构件的平均隔声量为44 dB,可有效降低目标舱室的噪声。本文的研究结果对气垫船及相类似舰船的减振降噪提供了新的思路。
For the sound insulation control in the noise transmission path control of hovercrafts, in addition to meeting the corresponding requirements for conventional sound insulation performance, they should also ensure their performance such as explosion resistance and shock resistance. Conduct sound insulation performance calculation analysis and experimental testing research on the front end impact resistant wall panel of the air cushion vessel bulkhead. Based on statistical energy analysis method, a dual cavity single plate model was used to simulate standing wave tube equipment, and the sound insulation of a single layer homogeneous steel plate was calculated and verified through experimental testing. To further verify the accuracy of statistical energy analysis method in predicting material sound insulation, standing wave tubes were used for experimental research on component sound insulation. The experimental measurement and statistical energy analysis prediction results showed good agreement in the middle and low frequency bands below 630 Hz, while the error increased in the high frequency band with the appearance of the coincidence effect. The results indicate that the statistical energy analysis simulation calculation method used is effective, and the average sound insulation amount of this type of sound insulation component is 44 dB, which can effectively reduce the noise of the target cabin. The research results of this article provide new ideas for the vibration and noise reduction of hovercraft and similar ships.
2024,46(15): 23-26 收稿日期:2023-09-05
DOI:10.3404/j.issn.1672-7649.2024.15.004
分类号:TL375.2
作者简介:陈海涛(1980 – ),男,硕士,研究员,研究方向为舰船结构设计
参考文献:
[1] 何琳, 朱海潮. 声学理论与工程应用[M] 北京: 科学出版社, 2006.
[2] 徐伟. 全垫升式气垫船总振动计算方法研究[D]. 大连: 大连理工大学, 2018.
[3] 王博涵. 基于声学黑洞和反共振原理的船舶减振降噪设计研究[D]. 上海: 上海交通大学, 2020.
[4] 徐芹亮, 徐勤花, 李磊, 等. 海洋平台舱室舾装布置及舾装板隔声[J]. 噪声与振动控制, 2013(3): 159-162,175.
[5] 魏斌, 张冠军, 陈足君, 等. 多孔夹芯层组合方式对夹层板隔声特性影响研究[J]. 噪声与振动控制, 2021, 41(3): 228-233.
[6] 董明磊. 声学材料隔声量测量系统的研究[D]. 上海: 上海交通大学, 2008.
[7] 周涛, 陈志坚. 气垫隔声结构水中隔声性能分析[J]. 噪声与振动控制, 2013, 33(2): 68-72.
[8] ARUNKUMAR M P, PITCHAIMANI J, GANGADHARANK V. Vibro-acoustic response and sound transmission loss characteristics of truss core sandwich panel filled with foam[J]. Aerospace Science and Technology, 2018, 78: 1-11.
[9] 吴廷洋, 吴锦武. 蜂窝层合板结构的隔声特性研究[J]. 材料导报, 2016, 30(8): 153-157.
[10] 范鑫, 崔洪宇, 洪明. 基于Virtual. Lab Acoustics 的蜂窝夹层板结构传声特性分析[J]. 噪声与振动控制, 2017, 37(4): 34-39.
[11] 石嘉欣, 杨德庆, 郁扬. 隔声量计算的边界元–有限元–统计能量法[J]. 噪声与振动控制, 2016, 36(6): 62-66.
[12] 徐明林, 马辉, 于佳玮, 等. 基于统计能量法船用复合板的隔声性能研究[J]. 江苏船舶, 2022, 39(4): 21-25.
[13] 陶猛, 王广玮. 驻波管中测量声学材料的隔声量[J]. 噪声与振动控制, 2013, 33(5): 210-212.
[14] 黄险峰. 双层墙隔声量的SEA 预测[J]. 四川建筑科学研究, 2006(1): 164-166.
[15] 陈卫松, 邱小军. 多层板的隔声特性研究[J]. 南京大学学报(自然科学版), 2005, (1): 91-97.
[16] GB/T 19889.3-2005, 声学建筑和建筑构件隔声测量, 第3部分: 建筑构件空气声隔声的实验室测量[S]. 全国声学标准化技术委员会, 2006.