传统的橡胶阻尼材料拥有较好的减振能力,但其力学承载能力不足。针对上述问题,基于仿生梯度设计思想,结合轻质多孔结构的优异力学性能和聚氨酯材料的高阻尼超弹性性能,设计一种具有优异力学承载性能和减振性能的新型管状增强超弹梯度多孔结构,开发出了模压灌注一体化成型工艺,实现了不同规格超弹梯度多孔结构减振器的制备。通过模态分析和频响试验获得结构的固有振动和减振性能,揭示了不同硬度聚氨酯材料、不同拓扑构型增强管等参数对结构减振性能的影响规律。结果发现, 相比与其他结构,圆型增强结构在低频段具有较高的基频和较低的共振峰值,表现出结构高刚度高阻尼的优异性能;而在高频段三角型增强结构整体响应更低,减振性能较优异。
Traditional rubber damping materials have better damping capacity, but their mechanical bearing capacity is insufficient. To solve the above problems, based on the bionic gradient design idea, combined with the excellent mechanical properties of lightweight porous structure and the high damping superelastic properties of polyurethane materials, a new tubular reinforced superelastic gradient porous structure with excellent mechanical load bearing properties and vibration damping properties is designed, an integrated molding process of molding and perfusion is developed. The preparation of different sizes of superelastic gradient porous structure shock absorbers is realized. Through modal analysis and frequency response experiment, the natural vibration and vibration damping properties of the structure were obtained, and the effects of different hardness polyurethane materials and different topological configuration reinforced tubes on the vibration damping properties of the structure were revealed. The results show that compared with other structures, the circular reinforced structures have higher fundamental frequency and lower resonance peak value in low frequency band, which shows excellent performance of high stiffness and high damping. In the high frequency band, the triangular reinforced structure has lower overall response and better vibration damping performance.
2024,46(15): 27-33 收稿日期:2023-08-29
DOI:10.3404/j.issn.1672-7649.2024.15.005
分类号:U668.5
基金项目:国家自然科学基金资助项目(12172098)
作者简介:张晓旭(1989 – ),女,硕士,高级工程师,研究方向为齿轮箱智能诊断及减振降噪设计
参考文献:
[1] 牟文珺, 桂洪斌. 复合材料基座在船舶设备振动传递控制中的应用[J]. 舰船科学技术, 2019, 41(3): 50-55.
MOU Wenjun, GUI Hongbin. Application of composite pedestal in vibration transfer control of ship equipment[J].Ship Science and Technology, 2019, 41(3): 50-55.
[2] 张相闻. 船舶宏观负泊松比效应蜂窝减振及防护结构设计方法研究[D]. 上海: 上海交通大学, 2017.
[3] 张梗林, 杨德庆. 船舶宏观负泊松比蜂窝夹芯减振器优化设计[J]. 振动与冲击, 2013, 32(22): 68-72+78.
[4] 张欢欢, 王杰, 黄刚, 等. 汽车用聚氨酯减振材料的结构与性能[J]. 高分子学报, 2016(10): 1447-1454.
[5] 梁龙强, 黄微波, 武迪, 等. 聚氨酯–橡胶复合阻尼材料减振优化设计[J]. 工程科学与技术, 2020, 52(1): 184-190.
[6] LIANG Longqiang, HUANG Weibo, LYU Ping, et al. Impacts of PU foam stand-off layer on the vibration damping performance of stand-off free layer damping cantilever beams[J]. Shock and Vibration, 2020: 1-13.
[7] 张法明, 王红英, 陈刚, 等. 小半径曲线下聚氨酯减振垫浮置板轨道减振性能的测试分析[J]. 交通节能与环保, 2021, 17(4): 143-147.
[8] GOSAR A, EMRII, KLEMENC J, et al. On the vibration-damping properties of the prestressed polyurethane granular material[J]. Polymers, 2023, 15(5): 1299.
[9] 赵长银. 泡沫铝—聚氨酯复合材料减振降噪性能试验研究[D]. 南京: 东南大学, 2017.
[10] CAMEIRO V H, PUGA H, MEIRELES J. Vibration damping and acoustic behavior of PU-filled non-stochastic aluminum cellular solids[J]. Metals, 2021, 11(5): 725.
[11] 邹美帅, 李晓东, 张旭东, 等. 高减振降噪微孔聚氨酯弹性体研究[J]. 中国环保产业, 2022(6): 69-72.
[12] 王金友, 沈超明, 姜文安, 等. 船用聚氨酯蜂窝板的隔声特性研究[J]. 舰船科学技术, 2022, 44(6): 60-64.
WANG Jinyou, SHEN Chaoming, JIANG Wenan,et al. Sound insulation characteristics of marine polyurethane honeycomb board[J].Ship Science and Technology, 2022, 44(6): 60-64.
[13] 朱子旭, 朱锡, 李永清, 等. 复合材料夹芯结构研究现状及其在船舶工程的应用[J]. 舰船科学技术, 2018, 40(3): 1-7.
ZHU Zixu, ZHU Xi, LI Yongqing,et al. Present researches about sandwich composite structures and its applies in ship industry[J].Ship Science and Technology, 2018, 40(3): 1-7.
[14] 陆姗姗, 盛美萍, 任杰安. 格栅夹层板抑振性能研究[J]. 动力学与控制学报, 2012, 10(2): 157-161.
[15] YANG Jinshui, XIONG Jian, MA Li, et al. Study on vibration damping of composite sandwich cylindrical shell with pyramidal truss-like cores[J]. Composite Structures, 2014, 117: 362-372.
[16] YANG Jinshui, XIONG Jian, MA Li, et al. Modal response of all-composite corrugated sandwich cylindrical shells[J]. Composites Science and Technology, 2015, 115: 9-20.
[17] YANG Jinshui, MA Li, SCHMIDT R, et al. Hybrid lightweight composite pyramidal truss sandwich panels w ith high damping and stiffness efficiency[J]. Composite Structures, 2016, 148: 85-96.
[18] LI Shuang, YANG Jinshui, YANG Fang, et al. Fabrication and vibration isolation capacity of multilayer gradient metallic lattice sandwich panels[J]. Mechanical Systems and Signal Processing. 2022, 180: 109417.
[19] LI Shuang, YANG Jinshui, SCHMIDT R, et al. Compression and hysteresis responses of multilayer gradient composite lattice sandwich panels[J]. Marine Structures. 2021, 75: 102845.
[20] 杨金水, 林鑫, 刘彦佐. 一种具有减振隔冲性能的超弹混杂人工周期结构及制备方法[P]. 黑龙江省: CN115574031A, 2023-01-06.
[21] 罗佳润. 海蚀环境下橡胶隔震支座性能劣化规律研究[D]. 广州: 广州大学, 2014.