潜艇在水下航行过程中为保证各个系统能正常工作,会由冷却系统向外排放大量的高于环境温度的冷却水,同时潜艇会对水体产生扰动,这些影响会在海面形成独特的红外特征和伴生的水动力特征。基于VOF(Volume of Fluid)多相流模型的来流法,使用Flunet软件对万吨级潜艇模型进行冷却水的排放及热尾流的扩散浮升过程进行数值仿真,并对热尾流扩散结果进行比较分析。结果表明潜艇自身的冷却水排放在较大的深度以及较低的航速下,不足以扩散至水面以形成明显的高温区,而潜艇对水体的扰动会在水面形成一片低温区,即“冷斑”现象。
To ensure the normal operation of various systems during the submarine's underwater voyage, a large amount of cooling water with a temperature higher than the ambient temperature will be discharged from the cooling system, and the submarine will also cause disturbance to the water body. These effects will form unique infrared signatures and associated hydrodynamic features on the surface of the sea. Based on the Volume of Fluid (VOF) method, The inflow method of multiphase flow model uses FLUNET software to numerically simulate the cooling water discharge and thermal wake diffusion and lift process of a 10000-ton submarine model, and compares and analyzes the thermal wake diffusion results. The results show that the cooling water discharge of the submarine itself at a large depth and low speed is not enough to spread to the surface to form a significant high-temperature zone, while the disturbance of the water body by the submarine will form a low-temperature zone on the surface, known as the "cold spot" phenomenon.
2024,46(15): 47-52 收稿日期:2023-10-13
DOI:10.3404/j.issn.1672-7649.2024.15.008
分类号:U661.1
基金项目:重点研发计划资助项目(2022YFC2805702-01)
作者简介:彭嘉澍(1997 – ),男,硕士研究生,研究方向为水下流动传热
参考文献:
[1] MADURASINGHE D, TUCK E O. The induced electromagnetic field associated with submerged moving bodies in an unstratified conducting Fluid[J]. IEEE Journal on Oceanic Engineering, 1994, 19(2): 193-199.
[2] 陈允锋, 刘伟. 非声探潜新技术浅析[J] . 光纤与电缆及其应用技术, 2016(6): 29-36.
CHEN Yunfeng, LIU Wei. Brief analysis of new non-acoustic submarine detecting technologies[J] Optical Fiber &Electric Cable and Their Applications, 2016(6): 29-36.
[3] WREN G G, MAY D. Detection of submerged vessels using remote sensing techniques[J]. Australian Defense Force, 1997, 127(11): 9-15.
[4] CHEN Shengtao, ZHONG Jingjun, SUN Peng. Numerical simulation and experimental study of the submarine's cold wake temperature character[J]. Journal of Thermal Science, 2014, 23(3): 253-258.
[5] 胡日查, 郭亮, 张旭升. 自动力潜艇热尾流水面热特性的实验研究[J]. 舰船科学技术, 2017, 39(6): 53-56.
HU Richa, GUO Liang, ZHANG Xusheng. Experimental study on infrared signature of thermal wake of remote control submarine[J]. Ship Science and Technology, 2017, 39(6): 53-56.
[6] 戴天奇, 姚世卫, 魏志国. 基于动网格技术的潜艇热尾流浮升规律研究[J] 舰船科学技术, 2015, 37(6): 86-89.
DAI Tianqi, YAO Shiwei, WEI Zhiguo. Numerical simulation of thermal wake buoyant law based on dynamic meshing technique[J]. Ship Science and Technology, 2015, 37(6): 86-89.
[7] 王平, 杜永成, 柳文林, 等基于动网格与来流法的潜艇热尾流浮升扩散规律对比研究[J]. 工程热物理学报, 2020, 41(10): 2589-2595.
WANG Ping, DU Yongcheng, LIU Wenlin, et al. A comparative study on levitation and diffusion law of submarine thermal wake based on dynamic mesh and inflow method[J]. Journal of Engineering Thermophysics, 2020, 41(10): 2589-2595.
[8] 吴猛猛, 陈伯义, 杨立. 水下运动体尾流水面特征的研究进展与应用. [J]红外技术, 2009, 31(11): 639-653.
WU Mengmeng, CHENG Boyi, YANG Li. The study progress and application on the surface features of wake behind a going body underwater[J]. Infrared Technology, 2009, 31(11): 639-653.
[9] 陶文铨. 数值传热学[M]. 西安: 西安交通大学出版社, 1995.
[10] YAKHOT V, ORZAG S A. Renormalization group analysis of turbulence: basic theory[J]. Journal of Scientific Computing, 1986, 1: 3-11.
[11] 郭烈锦. 两相与多相流动力学[M]. 西安: 西安交通大学出版社, 2002.
[12] 徐亦凡, 胡坤. 潜艇螺旋桨空化临界航速及最小噪声操纵研究[J]. 计算机仿真, 2012, 29(5): 32-36.
XU Yifan, HU Kun. Resaerch of submarine propeller-cavitating critical speed and manoeuvr project in low noise[J]. Computer Simulation, 2012, 29(5): 32-36.
[13] 张晓怀, 陈翾, 杨立. 潜艇热尾流红外特征分析与计算[J]. 激光与红外, 2007, 37(10): 1054-1057.
ZHANG Xiaohuai, CHEN Xuan, YANG Li. The analysis and calculation of infrared signature of thermal wake of submarines[J]. Laser & Infrared, 2007, 37(10): 1054-1057.