针对自主式水下航行器(AUV)在海洋中易受海流海浪扰动的问题,本文提出一种基于自抗扰的无模型自适应深度控制方法(ADR-MFAC)。首先,通过引入无模型自适应控制律,解决AUV难以建立精确的数学模型的问题;其次,设计出AUV深度控制器,结合自抗扰控制算法来进一步提高控制器干扰性能,采用跟踪微分器对输入信号进行跟踪,并利用线性状态观测器来估计系统所受扰动。最后,通过仿真和海试验证了ADR-MFAC的控制性能:与PID控制相比,ADR-MFAC在保持较高控制精度的同时,超调量减小了51%,深度调节时间减小了21.4%,证明了ADR-MFAC在受到海流干扰时也可以实现稳定的深度控制,算法具有较强的鲁棒性。
In addressing the challenge of disturbances from ocean currents and waves affecting autonomous underwater vehicles (AUVs), this paper introduces a model-free, adaptive depth control method based on active disturbance rejection control (ADR-MFAC). Firstly, by incorporating model-free adaptive control laws, it resolves the difficulty of establishing precise mathematical models for AUVs. Secondly, an AUV depth controller is designed, combining the active disturbance rejection control algorithm to further enhance the controller's disturbance rejection capabilities. This involves utilizing a tracking differentiator for input signal tracking and leveraging a linear state observer for estimating system disturbances. Finally, the control performance of ADR-MFAC is validated through simulations and sea trials. In comparison to PID control, ADR-MFAC maintains higher control precision while reducing overshoot by 51% and decreasing depth adjustment time by 21.4%. This demonstrates that ADR-MFAC can achieve stable depth control even in the presence of disturbances from ocean currents, highlighting the algorithm's robustness.
2024,46(15): 89-94 收稿日期:2023-10-16
DOI:10.3404/j.issn.1672-7649.2024.15.016
分类号:TP273
基金项目:浙江自然科学基金资助项目(LTGG23E090002)
作者简介:王通(1999 – ),男,硕士研究生,研究方向为水下机器人的运动控制
参考文献:
[1] 侯海平, 付春龙, 赵楠, 等. 智能自主式水下航行器技术发展研究[J]. 舰船科学技术, 2022, 44(1): 86-90.
[2] 陈增强, 宋莞平, 孙明玮, 等. 自主式水下航行器自抗扰控制[J]. 哈尔滨工程大学学报, 2021, 42(11): 1625-1631.
[3] LIN Y H, YU C M, WU I C, et al. The depth-keeing performance of autonomous underwater vehicle advancing in waves integrating the diving control system with the adaptive fuzzy controller[J]. Ocean Engineering, 2023, 268: 113609.
[4] LIU F, LAN T, WANG S. A collaborative control method for multi-UAVs based on ADRC control[C]//2020 39th Chinese Control Conference (CCC), IEEE, 2020: 7014-7019.
[5] 饶志荣, 董绍江, 王军, 等. 基于干扰观测器的AUV深度自适应终端滑模控制[J]. 北京化工大学学报(自然科学版), 2021, 48(1): 103-110.
[6] 杜度. 基于RBF神经网络参数自整定的AUV深度控制[J]. 水下无人系统学报, 2019, 27(3): 284-289.
[7] 侯忠生, 许建新. 数据驱动控制理论及方法的回顾和展望[J]. 自动化学报, 2009, 35(6): 650-667.
[8] 张茂帅, 侯忠生. 带有迭代学习外环的快速路入口匝道无模型自适应预测控制[J]. 控制理论与应用, 2023, 40(5): 781-791.
[9] ZHANG F, HOU, J, NING D, et al. Depth control of an oil bladder type deep-sea AUV based on fuzzy adaptive linear active disturbance rejection control[J]. Machines, 2022, 10, 163.
[10] SUN Y, CHAI P, ZHANG G, et al. Sliding mode motion control for AUV with dual-observer considering thruster uncertainty[J]. Journal of Marine Science and Engineering, 2022, 10, 349.
[11] LIU C, XIANG X, YANG L, et al. A hierarchical disturbance rejection depth tracking control of underactuated AUV with experimental verification[J]. Ocean Engineering, 2022, 264: 112458.
[12] ZHANG Y, DENG H, LI Y. Depth control of AUV using sliding mode active disturbance rejection control[C]//2018 3rd International Conference on Advanced Robotics and Mechatronics (ICARM). IEEE, 2018: 300-305.
[13] LI X, REN C, MA S, et al. Compensated model-free adaptive tracking control scheme for autonomous underwater vehicles via extended state observer[J]. Ocean Engineering, 2020, 217: 107976.
[14] ZHANG Z, LIU B, WANG L. Autonomous underwater vehicle depth control based on an improved active disturbance rejection controller[J]. International Journal of Advanced Robotic Systems, 2019, 16(6): 1729881419891536.
[15] 楼鉴路, 李文魁, 周铸, 等. 基于线性自抗扰控制的AUV深度控制研究[J]. 舰船科学技术, 2023, 45(6): 96-101.
[16] LIU K, WANG H, XU X, et al. Development and trials of a novel deep-sea multi-joint autonomous underwater vehicle[J]. Ocean Engineering, 2022, 265: 112558.
[17] XU J, HUANG F, WU D, et al. A general motion control framework for an autonomous underwater vehicle through deep reinforcement learning and disturbance observers[J]. Journal of the Franklin Institute, 2023, 360(8): 5728-5758.
[18] WU C, DAI Y, SHAN L, et al. Attitude angle compensated model-free adaptive trajectory tracking control for autonomous underwater vehicle[C]//2021 International Conference on Intelligent Technology and Embedded Systems (ICITES). IEEE, 2021: 1-7.