水下电场半实物模拟是研究船舶水下电场特性、验证水下电场感知装置性能和特征检测算法效果的重要手段。本文围绕电场半实物模拟需求,将电场数学模型与虚拟仪器技术相结合,基于LabVIEW平台开发了一套船舶电场模拟装置,可将船舶数学模型仿真信号转化为可被物理感知的电压信号。将船舶电场等效为水平电偶极子模型,基于LabVIEW语言开发测控软件界面,底层调用偶极子电场模型动态链接库文件实现电场信号的数值计算,利用数值信号驱动24位D/A卡产生模拟电压信号,实现船舶电场信号的物理生成。经实验验证,船舶电场模拟装置可实现典型海洋环境下运动船舶电场信号的物理输出,输出信号曲线与模型计算曲线吻合,可为船舶电场测试以及相关算法验证等提供信号输入。
Semi-physical simulation of underwater electric field is an important means to study the characteristics of ship's underwater electric field, verify the performance of underwater electric field sensing device and the effect of feature detection algorithm. This paper focuses on the demand for semi-physical simulation of electric field, combines the electric field mathematical model with virtual instrument technology, and develops a set of ship's electric field simulation device based on LabVIEW platform, which can convert the simulation signal of the ship's mathematical model into a physically perceivable voltage signal. The ship's electric field is equivalent to the horizontal electric dipole model, based on LabVIEW language development measurement and control software interface, the bottom call dipole electric field model dynamic link library file to achieve the numerical computation of the electric field signal, the use of numerical signals to drive the 24-bit D/A card to produce analog voltage signals, to achieve the physical generation of the ship's electric field signal. After experimental verification, the ship electric field simulation device can realize the physical output of the ship electric field signal under typical marine environment, and the output signal curve matches with the calculated curve of the model, which can provide signal input for the ship electric field test and related algorithm verification.
2024,46(15): 125-129 收稿日期:2023-10-09
DOI:10.3404/j.issn.1672-7649.2024.15.022
分类号:TP391.9
作者简介:邬远哲(1999 –),男,硕士研究生,研究方向为舰船水下电磁场建模仿真
参考文献:
[1] 卢新城, 王婷, 陈新刚, 等. 海船轴频电场建模方法研究[J]. 武汉理工大学学报(交通科学与工程版), 2012, 36(1): 168-170.
LU Xincheng, WANG Ting, CHEN Xingang, et al. Research on the modeling method of a sea going vessel’s shaft-rate electric fields[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2012, 36(1): 168-170.
[2] 余定峰, 耿攀, 杨勇, 等. 基于时谐偶极子模型的船舶轴频电场特性分析[J]. 船电技术, 2014, 34(10): 11-14.
YU Dingfeng, GENG Pan, YANG Yong, et al. Analysis on shaft-rate electric field of a shipbased on time harmonic dipole[J]. Marine Electric & Electronic Engineering, 2014, 34(10): 11-14.
[3] 岳瑞永, 田作喜, 吕俊军, 等. 基于时谐电偶极子模型的舰船轴频电场衰减规律研究[J]. 舰船科学技术, 2009, 31(10): 21-25.
YUE Ruiyong, TIAN Zuoxi, LV Junjun, et al. Study on attenuation law of the vessel’s shaft rate electric field based on the time-harmonic electric dipole model[J]. Ship Science and Technology, 2009, 31(10): 21-25.
[4] 熊露, 姜润翔, 龚沈光. 浅海中船舶轴频电场建模方法[J]. 国防科技大学学报, 2014, 36(1): 98-103.
XIONG Lu, JIANG Run-xiang, GONG Shen-guang. Ship modeling method of shaft-ELFE in shallow sea[J]. Journal of National University of Defense Technology, 2014, 36(1): 98-103.
[5] 潘龙, 胡佳飞, 谢瑞芳, 等. 基于有限元的船舶轴频电场模拟源模型仿真[J]. 船舶科学技术, 2016, 38(3): 102-106.
PAN Long, HU Jiafei, XIE Ruifang, et al. Simulation of marine shaft-rate frequency electric field of simulationsource model based on finite element method[J]. Ship Science and Technology, 2016, 38(3): 102-106.
[6] 林春生, 龚沈光. 船舶物理场[M]. 北京: 兵器工业出版社, 2007.
[7] 卢新城, 龚沈光, 周骏, 等. 海水中极低频水平电偶极子电磁场的解析解[J]. 电波科学学报, 2004(3): 290-295.
LU Xincheng, GONG Shenguang, ZHOU Jun, et al. Analytical expressions of the electromagnetic fields producedby a ELF time-harmonic HED embedded in the sea[J]. Chinese Journal of Radio Science, 2004(3): 290-295.
[8] 毛伟, 林春生. 两层介质中运动水平时谐偶极子产生的电磁场[J]. 兵工学报, 2009, 30(5): 555-560.
MAO Wei, LIN Chunsheng. The EM fields produced by amoving horizontally-directed time-harmonic dipole intwo-layer media[J]. Acta Armamentarii, 2009, 30(5): 555-560.
[9] 李斌, 赵珩. 基于LabVIEW的应答式水声定位系统目标模拟器[J]. 船舶电子工程, 2012, 32(10): 90-91+112.
LI Bin, ZHAO Heng. Target simulator of response type underwater acoustic positioning system based on LabVIEW[J]. Ship Electronic Engineering, 2012, 32(10): 90-91+112.
[10] 郭燕子, 李国良, 刘明波. 基于虚拟仪器技术的长基线系统目标模拟器[J]. 船舶电子工程, 2018, 38(6): 66-69.
GUO Yanzi, LI Guoliang, LIU Mingbo. Long baseline system target simulator based on virtualinstrument technology[J]. Ship Electronic Engineering, 2018, 38(6): 66-69.