针对以LRASM导弹为典型代表的低空隐身目标对水面舰艇生存的威胁,研究了单舰和编队应对LRASM导弹攻击的能力,提出了舰艇抗击低空隐身目标的制胜机理和行动要点;主张协同运用各海战场全域作战空间有人/无人装备,构建“全域探测—协同跟踪”的探测网,“抗扰通联—分布协同”的指控网,“梯次衔接—软杀硬毁”的杀伤网,以空间布局拓展换取时间窗口延长,以宽频协同探测对抗前向隐身设计,打造新型海战场低空隐身目标防空作战体系。进一步分析了海上对抗低空隐身目标的体系组成、能力、关键技术,建议通过加强早期预警探测、海空共享火控数据、增加中层拦截层数、增大近层火力密度等方式,层层抗击来袭弹群。
In view of the threat of low-altitude stealth targets(represented by LRASM) to the survival of surface ships, the Anti-missile ability of destroyer or fleet is studied, and the winning mechanism and action points of destroyer against low-altitude stealth targets (LAST) are studied. We indicate manned/unmanned system in the global space of naval battlefields is essential, and the detection network of "global detection-cooperative tracking", the command and control network of "anti-interference communication-distributed coordination", and the killing network of "echelon connection-soft kill and hard destroy" are needed. We also suggest exchanging the expansion of spatial layout for the extension of time window, and the broadband cooperative detection against forward stealth design, thereby, building a new low-altitude stealth targets defense system (LASTDS) for naval battlefields. The system composition, capability and key technology of LASTDS are further analyzed. We also point out that strengthening early warning detection, sharing fire control data with sea and air, increasing the number of middle-level interceptor layers, and increasing the fire density in the close-in defense are crucial for destroyer and fleet.
2024,46(15): 140-144 收稿日期:2023-09-07
DOI:10.3404/j.issn.1672-7649.2024.15.025
分类号:U662.9
基金项目:军科委军事理论科研计划基金资助项目(21-JSLL-01-00-00-01-22);中国科协青年人才托举工程基金资助项目(2022QNRC001)
作者简介:王兆杰(1985 – ),男,博士,高级工程师,研究方向为体系创新
参考文献:
[1] 张刚, 成建波, 李涛. 美国新一代远程反舰导弹发展概述[J]. 飞航导弹, 2019(12): 35-42.
[2] 叶海军. 敌方打击链分析及其启示研究[J]. 中国电子科学研究院学报. 2020, 16(3): 227–231.
YE H J. An analysis of the U. S. strike chain and its enlightenment[J]. Journal of China Academy of Electronics and Information Technology, 2020, 16(3): 227–231.
[3] 张耀, 王永海, 王菁华. 美国下一代反舰导弹LRASM性能分析与研究[J]. 飞航导弹, 2018(7): 18–22.
ZHANG Y, WANG Y H, WANG J H. Performance analysis and research of American next-generation anti-ship missile LRASM[J]. Winged Missiles Journal, 2018(7): 18–22.
[4] 张有志, 沙德鹏, 毛世超. 改变博弈规则的“LRASM”. 舰船电子工程[J], 2018(11): 12–14.
ZHANG Y Z, SHA D P, MAO S C. "LRASM" that changes the rules of the game[J]. Ship Electronic Engineering, 2018(11): 12–14.
[5] 高美凤, 樊浩, 黄树彩, 等. 低空/隐身目标防御体系研究[J]. 飞航导弹, 2012(4): 63–68.
GAO M F, FAN H, HUANG S C, et al. Research on ddfense system of Low altitude/stealth target[J]. Winged Missiles Journal, 2012(4): 63–68.
[6] 聂心东, 姜文志, 刘涛. 驱护舰编队舰空导弹低空反导杀伤区研究[J]. 电光与控制, 2009, 16(9): 20–23.
NIE X D, JIANG W Z, LIU T. Study on low-altitude anti-missile killing zone of ship-to-air missile in destroyer and frigate formation[J]. Electronics Optics & Control, 2009, 16(9): 20–23.
[7] 马晶, 韩明磊, 刘鹏. 基于马赛克战的海战场技术体系发展研究[J]. 火力与指挥控制, 2021, 46(12): 178-184.
MA J, HAN M L, LIU P. Research on the development of naval battlefield technology system based on Mosaic warfare[J]. Fire Control & Command Control, 2021, 46(12): 178-184.
[8] 马晶, 刘鹏, 仵钇征, 等. 深度强化学习应用于海战场多智能体对抗问题研究[J]. 舰船科学技术, 2021, 43(S1): 119-125+131.
MA J, LIU P, WU Y Z, et al. Research on the application of deep reinforcement learning to the multi-agent confrontation in the sea battlefield[J]. Ship Science and Technology, 2021, 43(S1): 119-125+131.
[9] 马晶, 徐宇恒, 刘鹏. 面向联合作战的体系评估综述及展望[C]// 中国指挥与控制学会. 第八届中国指挥控制大会论文集, 2020: 583–588.
MA J, XU Y P, LIU P. Review and prospect of system evaluation for joint operation[C]// Chinese Institute of Command and Control. Proceedings of the 8th China Conference on Command and Control, 2020: 583–588.
[10] 周泽宇, 马晶, 刘鹏, 等. 多算法组合的水面舰艇作战效能评估方法研究[C]// 中国指挥与控制学会. 第八届中国指挥控制大会论文集, 2020: 345–350.
ZHOU Z Y, MA J, LIU P. Research on evaluation method of surface ship combat effectiveness based on multi-algorithm combination[C]// Chinese Institute of Command and Control. Proceedings of the 8th China Conference on Command and Control, 2020: 345–350.