本文提出一种无人艇反潜作战能力的军事需求描述方法。首先,重点对军事需求的概念内涵进行研究和对比分析,然后,对无人艇反潜作战能力军事需求进行分析,明确了军事需求描述的内容。通过构建反潜无人艇多视图模型,在此基础上,分析梳理无人艇作战任务和能力需求,基于QFD方法进行任务能力映射分析。最后,通过能力量化评估,获得装备的能力需求和当前的能力差距,为后续装备发展建设方案制定提供理论依据。
This paper proposes a military requirement description method for the anti submarine combat capability of unmanned vessel. Firstly, the focus is on the research and comparative analysis of the concept and connotation of military requirements. Then, the military requirements for the anti submarine combat capability of unmanned vessels are analyzed, and the content of the military requirement description is clarified. By constructing a multi view model for anti submarine unmanned vessel, the combat tasks and capability requirements of unmanned vehicles are determined. On this basis, a task capability mapping is constructed based on the QFD method. Finally, through quantitative evaluation of capacity, equipment capacity demands and current gaps are obtained. This study provides a theoretical basis for the formulation of equipment development and construction plans in the future.
2024,46(15): 145-151 收稿日期:2024-07-19
DOI:10.3404/j.issn.1672-7649.2024.15.026
分类号:TP391
作者简介:高佳健(1987 – ),女,工程师,研究方向为海上无人系统设计
参考文献:
[1] 穆松, 张建, 王晓静, 等. 美国海军深海装备发展研究 [J]. 舰船科学技术, 2022, 44(14): 186–9.
NU S, ZHANG J, WANG X J, et al. Research on the development of deep一sea equipment of US Navy [J]. Ship Science and Technlogy, 2022, 44(14): 186–9.
[2] 王勇, 鲁克明, 余广平, 等. 国外潜艇声隐身技术的现状及发展方向[J]. 舰船电子工程, 2010, 30(1): 1-4.
WANG Y, LU K M, YU G P, et al. A Present Situation and Development of Noise Control for Submarines Abroad[J]. Ship Electronic Engineering, 2010, 30(1): 1-4.
[3] 吴小勇. 反潜体系的搜索能力优化方法研究 [D]. 长沙: 国防科学技术大学, 2012.
[4] 罗木生, 栾江华, 赵鑫业, 等. 反潜直升机吊放声纳巡逻线上搜潜概率建模[J]. 火力与指挥控制, 2022, 47(10): 99-102+7.
LUO M S, LUAN J H, ZHAO X Y, et al. Modeling search probability of anti-submarine helicopter using dipping sonar at patrol line[J]. Fire Control & Command Control, 2022, 47(10): 99-102+7.
[5] 江禅志, 李宁, 高国兴. 基于信息量的海洋环境与潜艇信息化作战[J]. 指挥控制与仿真, 2012, 34(4): 78-80.
JIANG C Z, LI N, GAO G X. Sea environment with submarine information operation based on amount of information[J]. Command Control& Simulation, 2012, 34(4): 78-80.
[6] 王慎, 石章松, 张丕旭. 反潜网络在潜、舰、机协同反潜作战中的应用[J]. 指挥控制与仿真, 2009, 31(6): 96-9.
WANG S, SHI Z S, ZHANG P X. Application of anti-submarine networks in cooperative anti-submarine combat of submarine, warship and airplane[J]. Command Control& Simulation, 2009, 31(6): 96-9.
[7] 曾斌, 张鸿强, 李厚朴. 针对无人潜航器的反潜策略研究[J]. 系统工程与电子技术, 2022, 44(10): 3174-81.
ZENG B, ZHANG H Q, LI H P. Research on antisubmarine strategy for unmanned undersea vehicles[J]. Systems Engineering and Electronics, 2022, 44(10): 3174-81.
[8] 褚凡, 梁涛. 武器装备作战需求论证中两种需求产生模式及其相互关系[J]. 四川兵工学报, 2011, 32(3): 4-6.
CHU F, LIANG T. Two sorts of requirement generation pattern and its mutual relation in fighting requirement argumentation of weapon equipment[J]. Journal of Sichuan Ordnance, 2011, 32(3): 4-6.
[9] 李雄, 王凯, 刘军. 信息化战场多传感器军事需求分析 [J]. 装备指挥技术学院学报, 2007, (1): 33-7.
LI X, WANG K, LIU J. Military requirements analysis on multi sensors on information battlefield [J]. Journal of the Academy of Equipment Command & Technology, 2007, (1): 33-7.
[10] 杨镜宇, 司光亚, 胡晓峰. 战争系统体系能力需求的建模与仿真 [J]. 系统仿真学报, 2006, (12): 3599-602.
[11] 张猛, 郭齐胜, 王晓丹, 等. 武器装备需求论证基本概念研究[J]. 装甲兵工程学院学报, 2011, 25(6): 1-5.
[12] 王家欣, 刘俊, 史嫄, 等. 装备需求论证研究综述[J]. 火力与指挥控制, 2022, 47(5): 9-13+9.
[13] 李巧丽, 郭齐胜. 基于能力的装备需求论证框架[J]. 军事运筹与系统工程, 2009, 23(2): 35-9.
[14] 王磊, 罗雪山, 舒振. C4ISR体系结构服务视图及其演化的形式化描述方法[J]. 国防科技大学学报, 2011, 33(3): 134-9.
[15] 姜志平, 刘俊先, 黄力, 等. C4ISR体系结构研究现状与问题 [J]. Systems Engineering and Electronics, 2007, (10): 1677-82.
[16] PIASZCZYK C. Model based systems engineering with department of defense architectural framework[J]. Systems Engineering, 2011, 14(3): 305-26.
[17] AMISSAH M, HANDLEY H A. A process for DoDAF based systems architecting [C]; proceedings of the 2016 Annual IEEE Systems Conference (SysCon), F, 2016.
[18] BELLMAN B, RAUSCH F. Enterprise architecture for e-government [C]; proceedings of the International Conference on Electronic Government, F, 2004. Springer.
[19] ROBERTSON-DUNN B, DEVELOPMENT. Beyond the Zachman framework: Problem-oriented system architecture [J]. IBM Journal of Research, 2012, 56(5): 10: 1-9.
[20] KOTUSEV S. Fake and real tools for enterprise architecture: the zachman framework and business capability model [J]. Enterprise Architecture Professional Journal, 2019, 1-14.
[21] SOFYANA L. Perencanaan arsitektur enterprise dengan kerangka kerja TOGAF (The Open Group Architecture Framework)[J]. PROZIMA(Productivity, Optimization and Manufacturing System Engineering), 2017, 1(2): 64-70.
[22] HAUSE M. The Unified Profile for DoDAF/MODAF (UPDM) enabling systems of systems on many levels [C]; proceedings of the 2010 IEEE international systems conference, F, 2010.
[23] JAMJOOM M M, ALGHAMDI A S, AHMAD I. Service oriented architecture support in various architecture frameworks: a brief review [C]; the Proceedings of the World Congress on Engineering and Computer Science, F, 2012 [C].
[24] HANNAY J E, SIMULATION. Architectural work for modeling and simulation combining the NATO architecture framework and C3 taxonomy[J]. The Journal of Defense Modeling, 2017, 14(2): 139-58.
[25] CHAN L-K, WU M-L. Quality function deployment: A literature review[J]. European Journal of Operational Research, 2002, 143(3): 463-97.