自主水下航行器(AUV)具有自主灵活、机动性强、扰动小和可塑性强等优点,是克服极地冰盖限制,探索两极冰下世界的重要方式。梳理各国极地AUV技术的发展与部署现状,介绍部分典型极地AUV的配置、应用与技术参数等,并对极地AUV关键技术进行详细分析,包括总体设计及优化技术、冰下导航与通信技术、极地布放回收技术、低温防护技术等内容。结合极地特殊环境条件与冰下作业需求,讨论极地AUV的未来发展趋势,为后续极地AUV的研制提供参考。
Autonomous underwater vehicle (AUV) has the advantages of autonomy, flexibility, strong maneuverability, low disturbance, and strong plasticity, making them an important way to overcome polar physical limitations and explore the polar ice world. This article reviews the development and deployment status of polar AUV technology in various countries, introduces the configuration, application, and technical parameters of some typical polar AUVs, and provides a detailed analysis of key technologies of polar AUVs, including the overall design and optimization technology, the under-ice navigation and communication technology, the polar deployment and retrieval technology, and the cryogenic protection technology. Based on the special environmental conditions in polar regions and the requirements of underwater exploration missions, the future development trends of polar AUVs were discussed, providing a reference for the subsequent development of polar AUVs.
2024,46(16): 1-9 收稿日期:2024-02-27
DOI:10.3404/j.issn.1672-7649.2024.16.001
分类号:TP242
基金项目:工信部高技术船舶资助项目(MC-201919-C11);国家自然基金资助项目(U22A2012);广东省基础与应用基础研究基金资助项目(2023A1515012039)
作者简介:黄学涛(1999 – ),男,硕士研究生,研究方向为水下机器人技术
参考文献:
[1] 宋德勇, 刘浩. 极地自主水下机器人研究现状和关键技术[J]. 船电技术, 2020, 40(9): 36-39.
SONG Deyong, LIU Hao. Present status and key technology of autonomous underwater vehicle for investigation in polar region[J]. Marine Electric Electronic Engineering, 2020, 40(9): 36-39.
[2] 柯剑寒, 岳钧百, 程雪岷, 等. 海洋生物水下原位监测技术及其在偏振维度的信息拓展[J]. 水下无人系统学报, 2023, 31(4): 614-623.
KE Jianhan, YUE Junbai, CHENG Xuemin, et al. Underwater in-situ monitoring technology for marine organisms and its information expansion in polarization dimensionn[J]. Journal of Unmanned Undersea Systems, 2023, 31(4): 614-623.
[3] GWYTHER D E, SPAIN E A, KING P, et al. Cold ocean cavity and weak basal melting of the s?rsdal ice shelf revealed by surveys using autonomous platforms[J]. Journal of Geophysical Research: Oceans, 2020, 125(6): e2019JC015882.
[4] MCEWEN R, THOMAS H, WEBER D, et al. Performance of an AUV navigation system at arctic latitudes[J]. IEEE Journal of Oceanic Engineering, 2005, 30(2): 443-454.
[5] BELLINGHAM J G, COKELET E D, KIRKWOOD W J. Observation of warm water transport and mixing in the Arctic basin with the ALTEX AUV[C]//2008 IEEE/OES Autonomous Underwater Vehicles, 2008: 1–5.
[6] MOORE C, MCKIBBIN P. Artemis AUV payload development[C]// OCEANS 2015 - MTS/IEEE Washington, 2015: 1–3.
[7] MEISTER M, DICHEK D, SPEARS A, et al. Icefin: redesign and 2017 antarctic field deployment[C]//OCEANS 2018 MTS/IEEE Charleston, 2018: 1–5.
[8] MEISTER M, DICHEK D, SPEARS A, et al. Antarctic deep field deployments and design of the icefin ROV[C]//Global Oceans 2020: Singapore – U. S. Gulf Coast, 2020: 1–5.
[9] KUKULYA A, PLUEDDEMANN A, AUSTIN T, et al. Under-ice operations with a REMUS-100 AUV in the Arctic[C]//2010 IEEE/OES Autonomous Underwater Vehicles. 2010: 1–8.
[10] DOWDESWELL J A, EVANS J, MUGFORD R, et al. Autonomous underwater vehicles (AUVs) and investigations of the ice–ocean interface in Antarctic and Arctic waters[J]. Journal of Glaciology, 2008, 54(187): 661-672.
[11] BRIERLEY A S, FERNANDES P G, BRANDON M A, et al. Antarctic krill under sea ice: elevated abundance in a narrow band just south of ice edge[J]. Science, 2002, 295(5561): 1890-1892.
[12] WADHAMS P, WILKINSON J P, MCPHAIL S D. A new view of the underside of Arctic sea ice[J]. Geophysical Research Letters, 2006, 33(4): 1–5.
[13] NICHOLLS K W, ABRAHAMSEN E P, BUCK J J H, et al. Measurements beneath an Antarctic ice shelf using an autonomous underwater vehicle[J]. Geophysical Research Letters, 2006, 33(8): 1–4.
[14] KIMURA S, JENKINS A, DUTRIEUX P, et al. Ocean mixing beneath Pine Island Glacier ice shelf, West Antarctica[J]. Journal of Geophysical Research: Oceans, 2016, 121(12): 8496-8510.
[15] ROPER D, HARRIS C A, SALAVASIDIS G, et al. Autosub Long Range 6000: a multiple-month endurance AUV for deep-ocean monitoring and survey[J]. IEEE Journal of Oceanic Engineering, 2021, 46(4): 1179-1191.
[16] MCPHAIL S, TEMPLETON R, PEBODY M, et al. Autosub long range AUV missions under the filchner and ronne ice shelves in the weddell sea, antarctica - an engineering perspective[C]//OCEANS 2019 - Marseille, 2019: 1–8.
[17] SALAVASIDIS G, MUNAFò A, MCPHAIL S D, et al. Terrain-aided navigation with coarse maps—toward an arctic crossing with an AUV[J]. IEEE Journal of Oceanic Engineering, 2021, 46(4): 1192-1212.
[18] NICHOLLS K W, ABRAHAMSEN E P, HEYWOOD K J, et al. High-latitude oceanography using the Autosub autonomous underwater vehicle[J]. Limnology and Oceanography, 2008, 53(5part2): 2309-2320.
[19] DUBROVIN F, SCHERBATYUK A, VAULIN Yu. Some results of operation for the AUV MMT 3000 mobile navigation system on long and deep water trajectories[C]//2018 Oceans - MTS/IEEE Kobe Techno-Oceans (OTO). 2018: 1–4.
[20] BOROVIK A I, RYBAKOVA E I, GALKIN S V, et al. Experience of using the autonomous underwater vehicle MMT-3000 for research on benthic communities in antartica[J]. Oceanology, 2022, 62(5): 709-720.
[21] MOLODTSOVA T N, MININ K V, KOLBASOVA G D, et al. Studies of benthic fauna within the project "Assessment of the Current State of Environmental Systems in the Atlantic Sector of the Southern Ocean and Their Periodic Variability"[J]. Oceanology, 2022, 62(6): 919-921.
[22] KAMINSKI C, CREES T, FERGUSON J, et al. 12 days under ice – an historic AUV deployment in the Canadian High Arctic[C]//2010 IEEE/OES Autonomous Underwater Vehicles, 2010: 1–11.
[23] WADHAMS P, KROGH B. Operational history and development plans for the use of AUVs and UAVs to map sea ice topography[J]. Polar Science, 2019, 21: 195-203.
[24] KING P, WILLIAMS G, COLEMAN R, et al. Deploying an AUV beneath the S?rsdal Ice Shelf: Recommendations from an expert-panel workshop[C]//2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV), 2018: 1–6.
[25] KING P, ZIüRCHER K, BOWDEN-FLOYD I. A risk-averse approach to mission planning: nupiri muka at the Thwaites Glacier[C]//2020 IEEE/OES Autonomous Underwater Vehicles Symposium (AUV), 2020: 1–5.
[26] ZENG J, LI S, LI Y, et al. The observation of sea-ice in the six Chinese national arctic expedition using polar-ARV[C]//OCEANS 2015 - MTS/IEEE Washington, 2015: 1–4.
[27] ZENG J, LI S, TANG Y, et al. The application of Polar-ARV in the fourth Chinese National Arctic Expedition[C]//OCEANS’11 MTS/IEEE KONA. 2011: 1–5.
[28] LIU T, JIANG Z, LI S, et al. Explorer1000: A long endurance AUV with variable ballast systems[C]//2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO), 2018: 1–6.
[29] https://baijiahao.baidu.com/s?id=1778812407366746068&wfr=spider&for=pc[EB].
[30] 王建, 庞永杰, 杨桌懿, 等. 基于并行子空间设计的AUV多学科可靠性优化[J]. 船舶力学, 2023, 27(5): 659-668.
WANG Jian, PANG Yongjie, YANG Zhuoyi, et al. Reliability-based multidisciplinary design optimization of AUVs based on concurrent subspace design[J]. Journal of Ship Mechanics, 2023, 27(5): 659-668.
[31] YEO R. Surveying the underside of an Arctic ice ridge using a man-portable GAVIA AUV deployed through the ice[C]//OCEANS 2007, 2007: 1–8.
[32] YAMAGATA H, MAKI T, YOSHIDA H, et al. Hardware design of variable and compact AUV "MONACA" for under-ice survey of antarctica[C]//2019 IEEE Underwater Technology (UT), 2019: 1–4.
[33] SPEARS A, WEST M, MEISTER M, et al. Under ice in antarctica: the icefin unmanned underwater vehicle development and deployment[J]. IEEE Robotics & Automation Magazine, 2016, 23(4): 30-41.
[34] KIRKWOOD W J, GASHLER D, THOMAS H, et al. Development of a long endurance autonomous underwater vehicle for ocean science exploration[C]//MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No. 01CH37295): Vol. 3, IEEE, 2001: 1504–1512.
[35] 刘自豪. 极地AUV的优化设计方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2021.
[36] 周恒. 极地AUV综合优化方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2022.
[37] TIAN M, LIANG Z, LIAO Z, et al. A polar robust kalman filter algorithm for DVL-Aided SINSs based on the ellipsoidal earth model[J]. Sensors, 2022, 22(20): 7879.
[38] PEBODY M. Autonomous underwater vehicle collision avoidance for under-ice exploration[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2008, 222(2): 53-66.
[39] INZARTSEV A, BAGNITCKII A, PANIN M. Algorithms of the AUV control system for operation under the lower ice edge[C]//2022 International Conference on Ocean Studies (ICOS), 2022: 11–14.
[40] FREITAG L, KOSKI P, MOROZOV A, et al. Acoustic communications and navigation under Arctic ice[C]//2012 Oceans, 2012: 1–8.
[41] SCHMIDT H, SCHNEIDER T. Acoustic communication and navigation in the new Arctic — A model case for environmental adaptation[C]//2016 IEEE Third Underwater Communications and Networking Conference (UComms), 2016: 1–4.
[42] ALEXANDER P, DUNCAN A, BOSE N, et al. Modelling acoustic propagation beneath Antarctic sea ice using measured environmental parameters[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2016, 131: 84-95.
[43] 莫雪晶. 北极楚科奇海台海洋环境噪声研究[D]. 青岛: 自然资源部第三海洋研究所, 2023.
[44] 殷敬伟, 吴雨珊, 韩笑, 等. 北极冰水混合水域的水声信道预测技术[J]. 信号处理, 2019, 35(9): 1496-1504.
YIN Jingwei, WU yushan, HAN Xiao, et al. Underwater acoustic channel prediction in arctic ice-water mixed waters[J]. Journal of Signal Processing, 2019, 35(9): 1496-1504.
[45] KING P, LEWIS R, MOULAND D, et al. CATCHY an AUV ice dock[C]//OCEANS 2009, 2009: 1–6.
[46] The ARTEMIS under‐ice AUV docking system - Kimball - 2018 - Journal of Field Robotics - Wiley Online Library[EB].
[47] GRIFFITHS G. Fifty years and counting: Applications of AUVs in the Polar Regions[C]//2020 IEEE/OES Autonomous Underwater Vehicles Symposium (AUV), 2020: 1–6.
[48] PHILLIPS A B, KINGSLAND M, LINTON N, et al. Autosub 2000 Under Ice: Design of a New Work Class AUV for Under Ice Exploration[C]//2020 IEEE/OES Autonomous Underwater Vehicles Symposium (AUV), 2020: 1–8.