海上自主水面船舶(MASS)作为未来航运业重要的发展方向,逐渐受到国际海事界的广泛关注,尤其是其航行过程中的潜在风险。首先,结合当前研究,比对了传统船舶和MASS的风险识别手段的差异性。其次,从人为、船舶设备与系统、环境、管理、网络安全5个方面归纳了MASS航行过程中可能存在的航行风险因素。最后,揭示了当前MASS航行风险识别研究的局限性。该研究有利于发现自主船舶航行风险因素的变化,对自主船舶风险识别与评估具有参考意义。
Maritime autonomous surface ships (MASS), as an important development direction in the future shipping industry, have gradually received widespread attention from the international maritime community, especially the potential risks influencing their navigation safety. Firstly, combining with the current research, the differences between the risk identification means of traditional ships and MASS are compared. Secondly, the possible risk factors during MASS navigation are summarized from five aspects: man-made, ship equipment and system, environment, management, and network security. Finally, the limitations of the current research on risk identification of MASS navigation are revealed and future research directions are proposed. This study is conducive to the discovery of changes in risk factors of autonomous ships, which is of reference significance for risk identification and assessment of autonomous ships.
2024,46(16): 10-16 收稿日期:2024-03-07
DOI:10.3404/j.issn.1672-7649.2024.16.002
分类号:U676.1
基金项目:宁波市自然科学基金资助项目(2021J111)
作者简介:李鹏昌(1998 – ),男,硕士研究生,研究方向为海事安全风险评估
参考文献:
[1] AHVENJARVI S. The Human Element and Autonomous Ships[J]. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, 2016, 10(3): 517-521.
[2] CHANG C H, KONTOVAS C, YU Q, et al. Risk assessment of the operations of maritime autonomous surface ships[J]. Reliability Engineering & System Safety, 2021, 207: 107324.
[3] 张宝晨, 耿雄飞, 李亚斌, 等. 船舶智能航行技术研发进展[J]. 科技导报, 2022, 40(14): 51-56.
ZHANG Baochen, GENG Xiongfei, LI Yabin, et al. Development status and trend of intelligent navigation technology[J]. Science & Technology Review, 2022, 40(14): 51-56.
[4] 中国船级社(CCS)发布《智能船舶规范》(2023)[J]. 船舶标准化工程师, 2023, 56(2): 1.
China Classification Society (CCS) publishes Smart Ship Code (2023)[J]. Marine Standardisation Engineer, 2023, 56(2): 1.
[5] WROBEL K, KRATA P, MONTEWKA J, et al. Towards the development of a risk model for unmanned vessels design and operations[J]. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, 2016, 10(2): 267-274.
[6] ZHANG X Y, WANG C B, LIU Y C, et al. Decision-making for the autonomous navigation of maritime autonomous surface ships based on scene division and deep reinforcement learning[J]. Sensors, 2019, 19(18): 4055.
[7] WROBEL K, MONTEWKA J, KUJALA P. Towards the development of a system-theoretic model for safety assessment of autonomous merchant vessels[J]. Reliability Engineering & System Safety, 2018, 178: 209-224.
[8] BANDA O A V, KANNOS S, GOERLANDT F, et al. A systemic hazard analysis and management process for the concept design phase of an autonomous vessel[J]. Reliability Engineering & System Safety, 2019, 191: 106584.
[9] FAN C, WROBEL K, MONTEWKA J, et al. A framework to identify factors influencing navigational risk for Maritime Autonomous Surface Ships[J]. Ocean Engineering, 2020, 202: 107188.
[10] RAMOS M A, THIEME C A, UTNE I B, et al. Human-system concurrent task analysis for maritime autonomous surface ship operation and safety[J]. Reliability Engineering & System Safety, 2020, 195: 106697.
[11] PORATHE T, PRISON J, MAN Y. Situation awareness in remote control centres for unmanned ships[J]. Human Factors in Ship Design & Operation, 2014: 105–114.
[12] 周颖, 刘正江, 王新建, 等. 自主船舶避碰过程中人为失误的分析与评估[J]. 大连海事大学学报, 2022, 48(3): 12-19.
ZHOU Ying, LIU Zengwang, WANG Xinjian, et al. Analysis and evaluation of human errors in collision avoidance process of maritime autonomous surface ships[J]. Journal of Dalian Maritime University, 2022, 48(3): 12-19.
[13] 范存龙, 张笛, 姚厚杰, 等. 海上自主水面船舶航行风险识别[J]. 中国航海, 2019, 42(2): 75-82.
FAN Cunlong, ZHANG Di, YAO Houjie, et al. Identification of navigational risks of autonomous surface vessels at sea[J]. Navigation of China, 2019, 42(2): 75-82.
[14] MAN Y, WEBER R, CIMBRITZ J, et al. Human factor issues during remote ship monitoring tasks: An ecological lesson for system design in a distributed context[J]. International Journal of Industrial Ergonomics, 2018, 68: 231-244.
[15] MAN Y, LUNDH M, PORATHE T. Seeking harmony in shore-based unmanned ship handling – From the perspective of human factors, what is the difference we need to focus on from being onboard to onshore?[C]//Proceedings of the 5th International Conference on Applied Human Factors and Ergonomics AHFE, 2014.
[16] WAHLSTROM M, HAKULINEN J, KARVONEN H, et al. Human factors challenges in unmanned ship operations – insights from other domains[J]. Procedia Manufacturing, 2015, 3: 1038-1045.
[17] ABILIO R M, UTNE I B, MOSLEH A. Collision avoidance on maritime autonomous surface ships: Operators’ tasks and human failure events[J]. Safety Science, 2019, 116: 33-44.
[18] RODSETH ? J, BURMEISTER H C. Risk assessment for an unmanned merchant ship[J]. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, 2015, 9(3): 357-364.
[19] 段尊雷, 李玉衡. 智能船舶风险分析和对策[J]. 中国海事, 2019(12): 15-17.
DUAN Zunlei, LI Yuheng. Risk analysis on intelligent ships and associated countermeasures[J]. China Maritime Safety, 2019(12): 15-17.
[20] 张文君, 张英俊, 张闯. 基于HHM-RFRM理论的智能船舶航行风险识别与筛选[J]. 安全与环境学报, 2023, 23(2): 333-340.
ZHANG Wenjun, ZHANG Yingjun, ZHANG Cuang. Intelligent ship navigation risk identification and screening based on HHM-RFRM method[J]. Journal of Safety and Environment, 2023, 23(2): 333-340.
[21] 洛佳男, 张宝晨, 耿雄飞, 等. 船舶智能航行安全风险及其演化研究[J]. 中国航海, 2021, 44(4): 130-135.
LUO Jianan, ZHANG Baochen, GENG Xiongfei, et al. Research on safety risk and its evolution of ship autonomous navigation[J]. Navigation of China, 2021, 44(4): 130-135.
[22] ALOP A. The main challenges and barriers to the successful “smart shipping”[J]. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, 2019, 13(3): 521-528.
[23] 何延康, 张笛, 张金奋, 等. 海事安全研究发展动态——第13届船舶导航与海上运输安全国际会议综述[J]. 交通信息与安全, 2019, 37(6): 1-10.
HE Yankang, ZHANG Di, ZHANG Jinfen, et al. Research Trends of Maritime Safety: A Review of TransNav 2019 Conference[J]. Journal of Transport Information and Safety, 2019, 37(6): 1-10.
[24] ISSA M, ILINCA A, IBRAHIM H, et al. Maritime autonomous surface ships: problems and challenges facing the regulatory process[J]. Sustainability, Basel: MDPI, 2022, 14(23): 15630.
[25] 郑国旺, 邢玉林, 王毅. 海上水面自主船舶(MASS)航海保障需求简析[J]. 航海技术, 2021(2): 72-75.
ZHENG Guowang, XING Yulin, WANG Yi. Maritime autonomous surface ships (MASS) navigational security requirements in brief[J]. Maritime Technology, 2021(2): 72-75.
[26] 孙旭, 蔡玉良, 于淳. 智能航行辅助决策系统风险评估及控制措施研究[J]. 中国航海, 2021, 44(4): 118-124.
SUN Xu, CAI Yuliang, YU Chun. Risk assessment concerning intelligent decision-making assistant system and the risk control measures[J]. Navigation of China, 2021, 44(4): 118-124.
[27] THIEME C A, UTNE I B. Safety performance monitoring of autonomous marine systems[J]. Reliability Engineering & System Safety, 2017, 159: 264-275.
[28] LAZAKIS I, DIKIS K, MICHALA A L, et al. Advanced ship systems condition monitoring for enhanced inspection, maintenance and decision making in ship operations[J]. Transportation Research Procedia, 2016, 14: 1679-1688.
[29] VINNEM J E, UTNE I B. Risk from cyberattacks on autonomous ships[M]. HAUGEN S, BARROS A, GUUJK C V, et al. Safety and Reliability – Safe Societies in a Changing World. London: CRC Press, 2018: 1485–1492.
[30] 汪洋, 叶挺, 李廷文, 等. 自主船舶航行系统信息空间安全: 挑战与探索[J]. 华中科技大学学报(自然科学版), 2023, 51(2): 64-76.
WANG Y, YE T, LI T W, et al. Information space security of autonomous ship navigation systems: challenges and exploration[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51(2): 64-76.
[31] ERSTAD E, OSTNES R, LUND M S. An operational approach to maritime cyber resilience[J]. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, 2021, 15(1): 27-34.