将水下无人潜航器耐压结构作为应用背景,为对比椭球形薄壳与圆柱形薄壳承载差异,以应力和弹性稳定性作为典型力学性能指标进行对比。基于第四强度理论,以Mises应力作为典型应力开展数值计算,同等重量下椭球薄壳应力峰值较圆柱薄壳应力峰值小4%左右。以等容积、等重量为前提,基于ISIGHT平台调用Ansys,采用NSGAⅡ优化算法开展椭球薄壳弹性稳定性优化,同等重量、同等有效容积下,椭球薄壳稳定性较圆柱壳提升1.78%~6%;仅要求同等容积时,椭球薄壳稳定性较圆柱壳最大提升约200%。研究成果可为超大潜深潜器耐压结构选型提供借鉴。
Taking the pressure resistant structure of underwater unmanned vehicle as the application background, stress and elastic stability were compared with the bearing difference between ellipsoidal thin shell and cylindrical thin shell, and stress and elastic stability were compared as typical mechanical property indicators. Based on the fourth strength theory, the Mises stress was used as the typical stress to carry out numerical calculation, and the peak stress of ellipsoidal thin shell is about 4% smaller than that of cylinder under the same weight. On the premise of equal volume or weight, call start the Ansys via the ISIGHT platform. NSGAⅡ optimization algorithms were used to optimize the elastic stability of ellipsoid thin shell, and the stability of ellipsoid was increased by 1.78%~6% compared with that of cylinder under the same weight and the same effective volume. When the same volume is required only, the stability of ellipsoid was increased 200% compared to that of cylinder under certation condition. The research results provide reference for the selection of pressure resistant structure of ultra-large deep submersibles.
2024,46(16): 23-26 收稿日期:2023-10-18
DOI:10.3404/j.issn.1672-7649.2024.16.004
分类号:U663.1
基金项目:国家自然科学基金资助项目(52201388);湖北省自然科学基金资助项目(2021CFB259)
作者简介:张二(1988 – ),男,博士,讲师,研究方向为船舶结构力学、耐压结构设计与优化
参考文献:
[1] 钱东, 赵江, 杨芸. 军用UUV发展方向与趋势(上)——美军用无人系统发展规划分析与解读[J]. 水下无人系统学报, 2017, 25(1): 1-30.
[2] 钱东, 赵江, 杨芸. 军用UUV发展方向与趋势(下)——美军用无人系统发展规划分析与解读[J]. 水下无人系统学报, 2017, 25(2): 107-150.
[3] 刘晓伟, 马宇, 李筠, 等. 2020年国外潜艇装备发展综述[J]. 飞航导弹, 2021: 1-10.
[4] 杨力. 2018年俄罗斯潜艇力量[J]. 国外核新闻, 2018, 10: 30-31.
[5] 朱丹. 美国潜艇作战系统发展及启示[J]. 飞航导弹, 2019, 7(7): 74-79.
[6] 余俊, 欧阳吕伟, 李艳青, 等. 深海高强度钢环肋圆柱壳单位容积重量优化设计[J]. 舰船科学技术, 2018, 40(7): 11-16.
YU Jun, OUYANG Lvwei, LI Yanqing, et al. Weight to volume optimization design of deep-sea ring-stiffened cylindrical high-strength steel shell[J]. Ship Science and Technology, 2018, 40(7): 11-16.
[7] ZHANG Er, ZHU Xianling, JING Teng et al. Research status and development trend of pressure resistant structure of deep submersibles[J]. Journal of Ship Mechanics, 2021, 10,25(10): 1427-1437.
[8] ZHANG Er, CHEN Guo-tao, ZHU Xian-ling et al. Advances in application and static strength of double curvature rotating pressure shell[J]. Journal of Ship Mechanics, 2022, 26(12): 1888-1903.
[9] 张建, 王纬波, 高杰, 等. 深水耐压壳仿生设计与分析[J]. 船舶力学, 2015, 19(11): 1360-1367.
ZHANG Jian, WANG Weibo, GAO Jie et al. Bionic design and analysis of deepwater pressure hull[J]. Journal of Ship Mechanics, 2015, 19(11): 1360-1367.
[10] ZHANG J, WANG M L, WANG W B, et al. Biological characteristics of eggshell and its bionic application[J]. Advance in Natural Science, 2015, 8(1): 41-50.
[11] 张建, 王明禄, 王纬波, 等. 蛋形耐压壳力学特性研究[J]. 船舶力学, 2016, 20(1-2): 99-109.
ZHANG Jian, WANG Minglu, WANG Weibo, et al. Bionic design and analysis of deepwater pressure hull[J]. Journal of Ship Mechanics, 2016, 20(1-2): 99-109.
[12] 刘晓伟, 马宇, 李筠, 等. 美国水下无人航行器发展及其对美军作战思想的影响[J]. 飞航导弹, 2020(6): 12-19.
LIU Xiaowei, MA Yu, LI Yun et al. The development of underwater UAVs in the United States and its influence on the American army's combat idea[J]. Aerodynamic Missile Journal, 2020(6): 12-19.
[13] 周念福, 邢福, 渠继东. 大排量无人潜航器发展及关键技术[J]. 舰船科学技术, 2020, 42(7): 1-6.
ZHOU Nianfu, XING Fu, QU Jidong. The development of large displacement unmanned underwater vehicle offoreign navy and its key technologies[J]. Ship Science and Technology, 2020, 42(7): 1-6.
[14] 柳正华, 张旭, 吴依帆. 2020年国外海军装备技术发展综述[J]. 国防科技工业, 2020(12): 78-82.
LIU Zhenghua, ZHANG Xu, WU Yifan. Overview of the development of foreign naval equipment technology in 2020[J]. Defense science technology and industry, 2020(12): 78-82.