为研究主动式冷梁(ACB)在船舶舱室的热舒适性,基于某船舶舱室环境,采用实验方法对不同送风参数下的船舶舱室ACB空调热舒适性进行研究,并与传统的风机盘管(FCU)空调进行对比。实验结果表明,送风温度、送风量和送风角度分别增加时,室内热舒适性均呈现先升高后下降的趋势。送风温度、送风量和送风角度为20℃、80 m3/h、120°,室内的热舒适性均达到最佳。同时相较于基准工况,送风温度能降低PMV-PPD绝对值50%和10%;送风量可以降低了60%的人员竖直空气温差(VATD),75%和77.4%的PMV-PPD绝对值,提高了9.6%的空气分布特性指标(ADPI);送风角度可以分别降低20%的人员VATD 、55.5%和54.5%的PMV-PPD绝对值,提高9.8%的ADPI。此外,ACB的室内热环境参数比FCU更平稳,人员VATD降低了1.5℃,热舒适性更高。
In order to study the thermal comfort of active chilled beam (ACB) in ship cabins, based on a certain ship cabin environment, experimental methods were used to study the thermal comfort of ACB air conditioning in ship cabins under different air supply parameters, and compared with traditional fan coil units (FCU) air conditioner for comparison. The experimental results show that when the air supply temperature, air supply volume and air supply angle increase respectively, the indoor thermal comfort first increases and then decreases. The air supply temperature, air volume and air supply angle are 20°C, 80 m3/h, and 120°, and the indoor thermal comfort is optimal. At the same time, compared with the baseline working conditions, the supply air temperature can reduce the absolute value of PMV-PPD by 50% and 10%; the air supply volume can reduce the personnel vertical air temperature difference (VATD) by 60%, and the PMV-PPD by 75% and 77.4%. The absolute value of PPD improves the air distribution characteristic index (ADPI) by 9.6%; the air supply angle can reduce the personnel VATD by 20%, the absolute value of PMV-PPD by 55.5% and 54.5% respectively, and improve the ADPI by 9.8%. In addition, ACB The indoor thermal environment parameters are more stable than those of FCU, personnel VATD is reduced by 1.5℃, and thermal comfort is higher.
2024,46(16): 34-38 收稿日期:2023-10-16
DOI:10.3404/j.issn.1672-7649.2024.16.006
分类号:U664.86
基金项目:国家自然科学基金资助项目(51479125)
作者简介:涂述涛(1999 – ),男,硕士研究生,研究方向为热力系统传热传质
参考文献:
[1] ALEXANDER D, O'ROURKE M. Design considerations for active chilled beams[J]. ASHRAE Journal, 2008, 50(9): 50–56.
[2] AZAD A S, RAKSHIT D , WAN M P , et al. Evaluation of thermal comfort criteria of an active chilled beam system in tropical climate: A comparative study[J]. Building and Environment, 2018, 145(11): 196-212.
[3] RHEE K N, CHOI S H, KIM C H. Comparative evaluation of the thermal uniformity in a space with active chilled beam and conventional air conditioning systems[J]. Journal of the Architectural Institute of Korea Planning & Design, 2014, 30(10): 199-206.
[4] 谢鹏, 钱作勤, 甘念重, 等. 典型客舱冷梁空调系统气流组织数值模拟[J]. 船海工程, 2021, 50(6): 57-59.
XIE Peng, QIAN Zuoqing, GAN Nianzhong, et al. Numerical simulation of air flow structure in typical cabin cold beam air conditioning system[J]. Ship and Ocean Engineering, 2021, 50(6): 57-59.
[5] WU B, CAI W, CHEN H. Effects of airflow rate and supply air temperature on the airflow pattern under active chilled beam system[C]//2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), IEEE, 2018: 1593-1598.
[6] RHEE K N, CHOI S H, TSOUVALAS A. Experimental investigation on the control performance of an active chilled beam system under dynamic cooling loads[J]. Applied Thermal Engineering, 2021, 194(11): 69-76.
[7] LI J, WU L, CHEN H. Analysis of thermal comfort and threshold range of airflow supply parameters for different types of work in humid-heat coal mines[J]. Case Studies in Thermal Engineering, 2023, 44(4): 102-107.
[8] LATIF H, HULTMARK G, RAHNAMA S, et al. Performance evaluation of active chilled beam systems for office buildings–A literature review[J]. Sustainable Energy Technologies and Assessments, 2022, 52(8): 1-16.
[9] 陈新, 张小松, 徐国英. 辐射诱导一体化末端冬季性能特性试验研究[J]. 流体机械, 2019, 47(10): 55-59.
CHEN Xin, ZHANG Xiaosong, XU Guoying. Experimental study on winter performance characteristics of radiation-induced integrated terminal[J]. Fluid Machinery, 2019, 47(10): 55-59.
[10] RHEE K N, CHOI S H, TSOUVALAS A. Experimental investigation on the control performance of an active chilled beam system under dynamic cooling loads[J]. Applied Thermal Engineering, 2021, 194: 1179-128.
[11] YAU Y H, TAM J H. A comparison study for active chilled beam and variable air volume systems for an office building[J]. Energy Procedia, 2018, 152: 378-383.
[12] WU B, CAI W, CHEN H, et al. Experimental investigation on airflow pattern for active chilled beam system[J]. Energy and Buildings, 2018, 166(5): 438-449.
[13] CEHLIN M, KARIMIPANAH T, LARSSON U, et al. Comparing thermal comfort and air quality performance of two active chilled beam systems in an open-plan office[J]. Journal of Building Engineering, 2019, 22(c): 56-65.