为了准确预测双曲度板材成形回弹量,控制板材加工成形质量,利用ABAQUS有限元软件对板材成形回弹过程进行仿真,构建长短时记忆网络模型(LSTM)。针对麻雀搜索算法(SSA)容易陷入局部最优的问题,提出基于Circle混沌映射、反向学习、高斯与柯西变异扰动的改进麻雀搜索算法,优化LSTM模型的学习率、迭代次数、隐藏层神经元个数,并将模型与BP神经网络模型、LSTM模型和普通SSA-LSTM模型进行对比分析。结果表明,该模型对双曲度板材成形回弹预测达到整体最优预测效果,具有一定有效性和可行性。
In order to accurately predict the springback of doubly curved plate forming and control the forming quality of the plate, the ABAQUS finite element software was used to simulate the forming springback process of the plate, and the long-term and short-term memory network model (LSTM) was constructed. Aiming at the problem that the sparrow search algorithm (SSA) is prone to local optimum, an improved sparrow search algorithm based on circle chaotic mapping, reverse learning, gaussian and cauchy variant perturbation was proposed. The learning rate, number of iterations and number of hidden layer neurons of the LSTM model were optimized. And the model was compared and analyzed with the BP neural network model, LSTM model and ordinary SSA-LSTM model. The results show that the proposed model achieves the overall optimal prediction performance on plate springback prediction, which has certain effectiveness and feasibility.
2024,46(16): 51-55 收稿日期:2023-10-16
DOI:10.3404/j.issn.1672-7649.2024.16.009
分类号:U671
基金项目:国家自然科学基金面上项目(52371317);湖北省自然科学基金青年项目(2022CFB882);现代制造质量工程湖北省重点实验室开放基金项目(KFJJ-2021012);湖北工业大学高层次人才基金项目(BSQD2020010)
作者简介:蔡一杰(1987 – ),男,博士,副教授,研究方向为先进制造技术
参考文献:
[1] 华剑锋, 胡勇, 王呈方, 等. 复杂曲面船体外板非对压多压头成形技术[J]. 船舶工程, 2011, 33(2): 63-66.
HUA Jianfeng, HU Yong, WANG Chengfang, et al. No-pair dins forming technology for complex curved surface of ship hull plate[J]. Ship Engineering, 2011, 33(2): 63-66.
[2] 赵涵, 胡勇, 蔡一杰, 等. 典型双曲度板材冲压成形回弹差异分析[J]. 武汉理工大学学报(交通科学与工程版), 2020, 44(3): 486-490.
ZHAO Han, HU Yong, CAI Yijie, et al. Springback difference analysis of typical doubly curved metal plate forming[J]. Journal of Wuhan University of Technology ( Transportation Science & Engineering), 2020, 44(3): 486-490.
[3] 苏绍娟, 胡勇, 王呈方. 基于SVM的船体外板冷弯回弹预测模型研究[J]. 舰船科学技术, 2015, 37(5): 104-108.
SU Shaojuan, HU Yong, WANG Chengfang. Research on prediction model of hull plate bending springback based on SVM[J]. Ship Science and Technology, 2015, 37(5): 104-108.
[4] XUE J, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22–34.
[5] 张伟康, 刘升, 任春慧. 混合策略改进的麻雀搜索算法[J]. 计算机工程与应用, 2021, 57(24): 74-82.
ZHANG Weikang, LIU Sheng, REN Chunhui. Mixed strategy improved sparrow search algorithm[J]. Computer Engineering and Applications, 2021, 57(24): 74-82.
[6] 吕鑫, 慕晓冬, 张钧, 等. 混沌麻雀搜索优化算法[J]. 北京航空航天大学学报, 2021, 47(8): 1712-1720.
LU Xin, MU Xiaodong, ZHANG Jun, et al. Chaos sparrow search optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1712-1720.
[7] 李雅丽, 王淑琴, 陈倩茹, 等. 若干新型群智能优化算法的对比研究[J]. 计算机工程与应用, 2020, 56(22): 1-12.
LI Yali, WANG Shunqin, CHEN Qianru, et al. Comparative study of several new swarm intelligence optimization algorithms[J]. Computer Engineering and Applications, 2020, 56(22): 1-12.
[8] 胡啸, 薛霖, 景洁, 等. 基于改进SSA-GA-BP神经网络的热连轧轧制力预测[J]. 塑性工程学报, 2023, 30(8): 122-129.
HU Xiao, XUE Lin, JING Jie, et al. Rolling force prediction of hot continuous rolling based on improved SSA-GA-BP neural network[J]. Journal of Plasticity Engineering, 2023, 30(8): 122-129.
[9] 陈刚, 林东, 陈飞, 等. 基于Logistic回归麻雀算法的图像分割[J]. 北京航空航天大学学报, 2023, 49(3): 636-646.
CHEN Gang, LIN Dong, CHEN Fei, et al. Image segmentation based on Logistic regression sparrow algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(3): 636-646.
[10] 毛清华, 张强. 融合柯西变异和反向学习的改进麻雀算法[J]. 计算机科学与探索, 2021, 15(6): 1155-1164.
MAO Qinghua, ZHANG Qiang. Improved sparrow algorithm combining cauchy mutation and opposition-based learning[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6): 1155-1164.
[11] 李艳波, 尹镨, 陈俊硕, 等. 结合改进残差网络和Bi-LSTM的短期电力负荷预测[J]. 哈尔滨工业大学学报, 2023, 55(8): 79-86.
LI Yanbo, YIN Pu, CHEN Junshuo, et al. Combining residual network and Bi-LSTM for short term power load forecasting[J]. Journal of Harbin Institute of Technology, 2023, 55(8): 79-86.