针对高密度聚乙烯(HDPE)材料楔形体垂直入水砰击响应的问题,建立楔形体三维数值模型,采用ALE(任意拉格朗日欧拉)流固耦合数值计算方法开展数值模拟研究,分析不同入水速度、斜升角、板厚对楔形体入水冲击响应特性的影响。研究结果表明,随着入水速度的增加,楔形体加速度峰值增大且相同时间内入水方向位移也增大;楔形体两翼形变与楔形体板厚成反比,增大板厚可以有效减小楔形体的形变;随着斜升角的增大,楔形体所受砰击压力和加速度峰值均明显减小,但对两翼变形的影响不明显。研究成果可为HDPE船舶的工程设计及应用提供一定参考。
A three-dimensional numerical wedge model was established to solve the vertical slamming response of high-density polyethylene (HDPE) wedge into water. ALE (Arbitrary Lagrange-Euler) fluid-structure coupling numerical calculation method was used to simulate the wedges. The influence of different water entry velocities, deadrise angle, and plate thickness on the impact response characteristics of the wedge are analyzed. The results show that with the increase of water entry velocity, the peak acceleration of the wedge increases, and the displacement in the water entry direction increases simultaneously. The deformation of the two wings of the wedge is inversely proportional to the wedge's thickness, and the wedge's deformation can be effectively reduced by increasing the thickness of the wedge. With the increase of the deadrise angle rise, the slamming pressure and the acceleration peak of the wedge decrease obviously, but the influence on the deformation of the two wings is not apparent. The research results can provide some reference for the engineering design and application of HDPE ships.
2024,46(16): 56-63 收稿日期:2023-10-09
DOI:10.3404/j.issn.1672-7649.2024.16.010
分类号:U662.3
基金项目:辽宁省教育厅科研项目(LJKZ0726)
作者简介:沈烈(1981 – ),女,博士,讲师,研究方向为新材料船舶设计
参考文献:
[1] LUO H B, WANG H, SOARES C G. Numerical and experimental study of hydrodynamic impact and elastic response of one free-drop wedge with stiffened panels[J]. Ocean Engineering, 2012, 40: 1-14.
[2] KHABAKHPASHEVA T I, KOROBKIN A A. Elastic wedge impact onto a liquid surface: Wagner's solution and approximate models[J]. Journal of Fluids and Structures, 2013, 36: 32-49.
[3] STENIUS I, ROSéN A, KUTTENKEULER J. Hydroelastic interaction in panel-water impacts of high-speed craft[J]. Ocean Engineering, 2011, 38(2-3): 371–381.
[4] WANG S, GARBATOV Y, Chen B Q, et al. Dynamic structural response of perforated plates subjected to water impact load[J]. Engineering Structures, 2016, 125: 179–190.
[5] WANG S, SOARES C G. Numerical study on the water impact of 3d bodies by an explicit finite element method[J]. Ocean Engineering, 2014, 78: 73-88.
[6] WANG S, SOARES C G. Slam induced loads on bow- flared sections with various roll angles[J]. Ocean Engineering, 2013, 67: 45-57.
[7] WANG S, SOARES C G. Asymmetrical water impact of two-dimensional wedges with roll angle with multi-material eulerian formulation[J]. International Journal of Maritime Engineering, 2014, 156: 115-130.
[8] WANG S, SOARES C G. Analysis of the water impact of symmetric wedges with a multi-material eulerian formulation[J]. International Journal of Maritime Engineering, 2012, 154: 191-205.
[9] 孙钊, 曹伟, 王聪. 球体垂直入水过程流体动力数值研究[J]. 振动与冲击, 2017, 36(20): 165-172.
SUN Zhao, CAO Wei, WANG Cong. Numerical investigations of hydrodynamic force acting on sphere during water[J]. Journal of Vibration and Shock, 2017, 36(20): 165-172.
[10] RUSSO S, JALALISENDI M, FALCUCCI G, et al. Experimental characterization of oblique and asymmetric water entry[J]. Experimental Thermal and Fluid Science, 2018, 92: 141-161.
[11] 李上明, 屈明. 基于 ALE 方法的楔形体入水分析[J]. 计算机辅助工程, 2018, 27(3): 48-53.
LI Shangming, QU Ming. Wedge water entry analysis based on ALE method[J]. Computer Aided Engineering, 2018, 27(3): 48-53.
[12] 张岳青, 白治宁, 曾小凡, 等. 楔形和弧形结构入水冲击响应研究[J]. 船舶力学, 2020, 24(3): 400-408.
ZHANG Yueqing, BAI Zhining, ZENG Xiaofan, et al. Study of water impact response of wedge-and arc-shaped structures[J]. Journal of Ship Mechanics, 2020, 24(3): 400-408.
[13] 施红辉, 周栋, 温俊生, 等. 基于ALE方法的弹性圆柱壳入水时的流固耦合模拟[J]. 弹道学报, 2020, 32(1): 9-14.
SHI Honghui, ZHOU Dong, WEN Jun-sheng, et al. Fluid-solid interaction simulation of elastic cylindrical shell penetrating water based on the ALE method[J]. Journal of Ballistics, 2020, 32(1): 9-14.
[14] BISAGNI C, PIGAZZINI M S. Modelling strategies for numerical simulation of aircraft ditching[J]. International Journal of Crashworthiness, 2017, 23(4): 377-394.