水下对接是自主水下航行器(AUV)能量补充和数据交换的关键技术,为提升对接成功率,针对拖曳式导向罩对接方法进行改进,设计了一种新型开合式接驳装置。分析该装置是否满足对接要求,本文基于机构质心位移分析和Newton-Euler动力学理论建立具有变质心特性的接驳装置水下六自由度运动模型,系绳简化为一变刚度 —阻尼轻质弹簧模型,结合系绳运动和受力边界条件建立系统缆-体耦合运动模型;并使用CFD软件STAR-CCM+对系泊悬浮接驳系统建立动态仿真模型。通过拖曳实验验证2种方法的有效性,其中仿真结果与实验数据的相关性更好,相关性系数最高时可达0.9367。最后利用动态仿真模型详细分析外界水流和波浪干扰以及接驳装置拖点变化、导向罩开合对接驳装置运动状态的影响,波浪幅值不宜超过0.2 m,拖曳架固定时接驳装置更有利,导向罩开合时对接驳装置的姿态角影响较小,对其位置的变化影响较大。
Underwater docking is a critical technology for the energy replenishment and data exchange of autonomous underwater vehicles (AUV). In order to improve the success rate of docking, a novel open-and-close docking device was designed, focusing on the improvement of the docking method involving a towed guide hood. To analyze whether this device meets the docking requirements, this paper, based on the analysis of the centroid displacement of the mechanism and the Newton-Euler dynamics theory, establishes a six-degree-of-freedom underwater motion model for the docking device with variable mass distribution characteristics. The tether is simplified into a variable stiffness-damping lightweight spring model. Combining the motion of the tether with force boundary conditions, a system cable-body coupling motion model is established. Additionally, a dynamic simulation model for the mooring-suspension connection system is created using computational fluid dynamics (CFD) software STAR-CCM+. The effectiveness of the two methods is verified through a drag experiment, with the simulation results showing a better correlation with experimental data, reaching a maximum correlation coefficient of 0.9367. Finally, utilizing the dynamic simulation model, the paper thoroughly analyzes the effects of external water flow, wave disturbances, changes in the towing point of the connection device, and the opening and closing of the guide cover on the motion state of the connection device. It is observed that the wave amplitude should not exceed 0.2 m for optimal performance. Moreover, when the tow frame is fixed, the connection device is more favorable, and the opening and closing of the guide cover have a minimal impact on the attitude angle of the connection device, while significantly influencing its position.
2024,46(16): 90-101 收稿日期:2026-08-14
DOI:10.3404/j.issn.1672-7649.2024.16.015
分类号:U662.3
基金项目:国防基础科研计划资助项目(JCKY2019207A019-2)
作者简介:谭桦(1996 – ),男,博士,研究方向为水下对接
参考文献:
[1] 郑荣, 辛传龙, 汤钟, 等. 无人水面艇自主部署自主水下航行器平台技术综述[J]. 兵工学报, 2020, 41(8): 1675-1687.
[2] DU X, ZHANG X. Influence of ocean currents on the stability of underwater glider self-mooring motion with a cable[J]. Nonlinear Dynamics, 2020, 99(4).
[3] 张斌, 宋保维. 水下驻留航行器锚泊过程动态运动仿真[J]. 华中科技大学学报(自然科学版), 2015, 43(4): 102-107.
[4] 张斌, 宋保维. 驻留型UUV锚泊系统运动建模与分析[J]. 哈尔滨工程大学学报, 2016, 37(4): 498-502.
[5] 邵成, 艾艳辉, 代军, 等. 水下锚系导弹发射系统运动研究[J]. 兵工学报, 2011, 32(9): 1154-1158.
[6] TIAN W , MAO Z , SONG B . Dynamic modeling of an underwater moored platform equipped with a hydrokinetic energy turbine[J]. Advances in Mechanical Engineering, 2018, 10(2): 68-78.
[7] 李艳生, 杨美美, 魏博, 等. 球形机器人水下系泊状态水流干扰运动分析[J]. 华中科技大学学报(自然科学版), 2020, 48(1): 71–76.
[8] VU M T , VAN M , BUI H P , et al. Study on dynamic behavior of unmanned surface vehicle-linked unmanned underwater vehicle system for underwater exploration[J]. Sensors, 2020, 20(5): 1-29.
[9] 王飞, 涂卫民, 邓德衡, 等. 水下双阵列拖曳系统缆破断情况下的运动响应[J]. 上海交通大学学报, 2020, 54(2): 211-220.
[10] FOSSEN T I. Guidance and control of ocean vehicles[M]. Hoboken, USA: John Wiley & Sons Inc. , 1994.
[11] 王飞. 海洋勘探拖曳系统运动仿真与控制技术研究[D]. 上海: 上海交通大学, 2007.
[12] 高婷, 庞永杰, 王亚兴, 等. 水下航行器水动力系数计算方法[J]. 哈尔滨工程大学学报, 2019, 40(1): 174-180.
[13] 施生达. 潜艇操纵性[M]. 北京: 国防工业出版社, 1995.
[14] 王庆云, 庞永杰, 李伟坡, 等. 系列舵翼潜艇水动力系数数值计算及试验研究[J]. 舰船科学技术, 2015, 37(11): 21-26.