针对无人集群中基于无线电测距的协同定位信息融合中面临的非线性问题,提出基于UKF的协同定位方法。该方法利用无迹卡尔曼滤波(UKF)非线性拟合特点来构造非线性的协同定位量测模型,避免了基于卡尔曼滤波(KF)的协同定位方法中将量测模型线性化带来的定位误差,从而提升了基于无线电测距的协同定位的位置精度。基于无线电测距设备搭建无人集群中基于UKF的无线电测距协同定位方法的验证系统,实验结果表明,相比基于KF的协同定位方法,基于UKF的协同定位方法在纬度方向位置误差改善了28.92%,经度方向位置误差改善了54.34%。
In order to address the nonlinear issues faced in collaborative positioning information fusion based on radio ranging in unmanned cluster, a collaborative positioning methodwith UKF is proposed. The method utilizes the nonlinear fitting characteristics of UKF to construct a nonlinear collaborative positioning measurement model, avoiding the positioning error caused by linearization of the measurement model in collaborative positioning method with KF, thereby improving the position accuracy of radio ranging collaborative positioning method. A verification system for radio ranging collaborative positioning method with UKF in unmanned cluster was built based on radio rangingequipments. The experiment results showed that compared to collaborative positioning method with KF, the collaborative positioning method with UKF improved the latitude direction positioning error by 28.92% and the longitude direction positioning error by 54.34%.
2024,46(16): 186-189 收稿日期:2023-11-08
DOI:10.3404/j.issn.1672-7649.2024.16.033
分类号:TN965
基金项目:中船集团预研项目(626010306)
作者简介:栾厚斌(1978 – ),男,高级工程师,研究方向为舰船作战系统研究
参考文献:
[1] LIU Y, LI S, FU Q, et al. Impart assessment of GNSS spoofing attacks on INS/GNSS integrated navigation system[J]. Sensors, 2018, 18(5): 1433-1453.
[2] WANG M K, YU P D, LI Y Z. Performance Analysisof GNSS/INS Loosely Coupled Integration Systems under GNSS Signal Blocking Environment[J]. E3S Web of Conferences, 2020: 206.
[3] GIANLUCA F, MARCO P, GIANLUCA M. Looseand tight GNSS/INS integrations: comparison of performance assessed in real urban scenarios[J]. Sensors, 2017, 17(2): 27.
[4] CRESPILLO O G, MEDINA D, SKALOUD J, et al. Tightly coupled GNSS/INS integration based on robust M-estimators[J]. 2018 IEEE/ION Position, Location and Navigation Symposium(PLANS), Monterey: IEEE, 2018: 1554–1561.
[5] LI Zengke. WiFi/PDR integrated navigation with robustly constrained kalmanfilter[J]. Measurement Science and Technology, 2020, 31(8): 526-536.
[6] ZHANGY, HSIUNG-Cheng. L, ZHAO J, et al, Amulti-DoF ultrasonic receiving devicefor indoor positioning of AGV system[C]//International Symposium on Computer, Consumer andControl, Taiwan, China: IEEE, 2018: 97–100.
[7] YAO C, HSIA W. An Indoor positioning system based on the dual-channel passive RFID technology[J]. IEEE Sensors Journal, 2018, 18(11): 4654-4663.
[8] KIM Dae-ho, KWON Goo-rak, PYUN Jae-young. NLOS identification in UWB channel for indoorpositioning[C]//Annual Consumer Communications and Networking Conference, Las Vegas, USA: IEEE, 2018: 1–4.
[9] 徐淑萍, 郭宇, 王双, 等. NLOS环境下基于UWB的定位算法研究[J]. 计算机仿真, 2023, 40(4): 439-442.
[10] 闫保芳, 毛庆洲. 一种基于卡尔曼滤波的超宽带室内定位算法[J]. 传感器与微系统, 2017, 36(10): 137-140,143.
[11] 王瑞荣, 郑书万, 陈浩龙, 等. 一种基于Taylor和Kalman的室内协同定位方法[J]. 传感技术学报, 2014, 27(11): 1557-1561.
[12] GAO Fanqi. An improved INS/PDR/UWB integrated positioning method forindoor foot-mounted pedestrians[J]. Sensor Review, 2019, 39(3): 318-331.
[13] 杨秀梓, 王敬东, 刘亚飞, 等. UWB/惯性技术组合优化的室内定位技术研究[J]. 电子测量技术, 2019, 42(15): 132-138.
[14] ZENG Z, LIU S, WANG L. NLOS detection and mitigation for UWB / IMU fusion system based on EKF and CIR[C]//Chongqing: Proceedings of the Eighteenth IEEE InternationalConference on Communication Technology, 2018: 376–381.