考虑在船舶排放控制区背景下,以燃油成本和租船成本为优化目标进行多目标船舶航速优化,选择基于蝴蝶优化算法与线性加权相结合和多目标蜻蜓算法的2种多目标优化方法,求解得出Pareto最优解集,最后通过理想点距离法的决策方法从Pareto最优解集中确定出最佳折衷解。结果表明,当以多目标蜻蜓算法优化航速航行时,燃油成本降低2.72%,租船成本降低15.57%,可有效降低5.78%的船舶营运成本,更能大大提高船东和航运企业的经济效益,更符合环保要求。
Considering the background of emission control area for ships, the multi-objective ship speed optimization is carried out with fuel cost and charter cost as optimization objectives, and two multi-objective optimization methods based on butterfly optimization algorithm combined with linear weighting and multi-objective dragonfly algorithm are selected to solve the Pareto optimal solution set. Finally, the optimal compromise solution is determined from Pareto optimal solution set by the decision method of ideal point distance method. The results show that when the multi-objective dragonfly algorithm is used to optimize sailing speed, the fuel cost is reduced by 2.72%, the charter cost is reduced by 15.57%, which can effectively reduce the ship operating cost by 5.78%, and greatly improve the economic benefits of shipowners and shipping enterprises. More in line with the requirements of environmental protection.
2024,46(17): 20-26 收稿日期:2023-10-18
DOI:10.3404/j.issn.1672-7649.2024.17.004
分类号:U676.3
基金项目:海洋装备与技术研究所资助项目(XTCXKY-20230003)
作者简介:郭霆(1975-),男,硕士,副教授,研究方向为船舶自动化
参考文献:
[1] 甘浪雄, 卢天赋, 郑元洲, 等. 定航线下考虑ECA的船舶航速多目标优化模型[J]. 中国航海, 2020, 43(3): 15-19.
[2] UNCTAD. Review of maritime transport 2020[R]. New York: UNCTAD, 2020.
[3] SHARMINA M, MCGLADE C, GILBERT P, et al. Global Energy Scenarios and their implications for future shipped trade[R]. London: IMO, 2020.
[4] 陈善能, 陈宝忠, 王兆强. 国际船舶防污公约在低碳经济时代下的发展[J]. 中国航海, 2010, 33(2): 80-83.
[5] GU Y, WALLACE S W. Scrubber: a potentially overestimated complicance method for the emission control areas: the importance of involving a ship's sailing pattern in the evaluation[J]. Transportation Research Part D: Transport and Environment, 2017, 55: 51-66.
[6] 张进峰, 杨涛宁, 马伟皓. 基于多目标粒子群算法的船舶航速优化[J]. 系统仿真学报, 2019, 31(4): 787-794.
[7] RONNEN D. The effect of oil price on the optimal speed of ships[J]. Journal of the Operational Research Society, 1982, 33(11): 1035-1040.
[8] 吴诗梁, 马伟皓, 宋睿, 等. 气象条件和排放控制区规定的船速多目标优化[J]. 中国航海, 2021, 44(3): 112-117.
[9] PENG Y B, Z X, TIAN Z H, et al. Sailing speed optimization for tramp ships with fuzzy time window[J]. Flexble Services and Manufacturing Joutnal, 2019, 31: 308-330.
[10] 张进峰, 马伟皓, 刘永森, 等. 考虑营运成本和排放的船舶航速多目标优化模型[J]. 中国航海, 2017, 40(1): 129-134.
[11] CORBETT J J, WANG Haifeng, WINEBRAKE J J. The effectiveness and costs of speed reductions on emissions from international shipping[J]. Transportation Research Part D: Transport and Environment, 2009, 14(8): 593-598.
[12] PSARAFTIS H N, KONTOVAS C A. Ship speed optimization: concepts, models and combined speed-routing scenarios[J]. Transportation Research Part C, Emerging Technologies, 2014, 44: 52-69.
[13] WEN M, PACINO D, KONTOVAS C A, et al. A multiple ship routing and speed optimization problem under time, cost and environmental objectives[J]. Transportation Research Part D: Transport and Environment, 2017, 52: 303-321.
[14] 袁裕鹏, 王康豫, 尹奇志, 等. 船舶航速优化综述[J]. 交通运输工程学报, 2020, 20(6): 18-34.
[15] 霍得利. 船舶航速优化节能性研究[D]. 大连: 大连海事大学, 2017.
[16] 孙立凯. 基于航速优化的船舶能耗研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
[17] 谭锋. 船舶航次经营辅助决策系统[D]. 武汉: 武汉理工大学, 2010.
[18] 梁正旭. 基于EEOI的船舶能效优化研究[D]. 厦门: 集美大学, 2020.
[19] 丁坤平. 基于权重法与遗传算法得船舶定航线多目标航速优化[D]. 哈尔滨: 哈尔滨工程大学, 2021.
[20] 马小陆, 梅宏, 谭毅波, 等. 蝴蝶优化算法的移动机器人全局路径规划研究[J]. 机械科学与技术, 2023, 42(12): 2085-2092.
[21] 王康豫. 多种优化目标下的船舶航速优化研究[D]. 武汉: 武汉理工大学, 2021.