为了提高船用离心泵性能和振动噪声控制目标,从而优化舰船隐蔽巡航能力,本文搭建离心泵试验台,对不同工况下泵的性能、压力脉动和流动噪声进行测量分析,通过对比试验和数值计算结果验证数值算法的准确性,结合CFD-FEM方法对船用泵内剪应力、湍动能、压力脉动和流阻及流致噪声特性进行分析。结果表明,叶片出口处壁面剪应力和湍动能较大,在叶片出口处1/3区域内摩擦阻力更大,压力脉动在叶频及其倍频处有明显峰值,呈现出明显地离散特征。内场噪声在整个频率带内表现为宽频特征,并且当频率增加,声压降低。在1000 Hz以内频段声压级能量较高,在叶片频率(241.7 Hz)及其倍频处能观察到特征峰值。总声压级随着流量的增加而呈现出先减小后增加的趋势。
In order to improve the performance and vibration noise control objectives of marine centrifugal pumps, and optimize the stealth cruise capability of ships. A marine pump test bench was built to measure and analyze the pump performance, pressure pulsation and flow noise under different working conditions. The accuracy of the numerical algorithm was verified through comparative tests and numerical calculation results. The shear stress, turbulent kinetic energy, pressure pulsation, flow resistance and flow-induced noise characteristics of marine pump were analyzed by combining CFD-FEM method. The results show that the wall shear stress and turbulent kinetic energy at the blade outlet are larger, the friction resistance in the 1/3 region at the blade outlet is larger, and the pressure pulsation has an obvious peak value at the blade frequency and its frequency doubling, showing obvious discrete characteristics. The internal field noise exhibits wideband characteristics throughout the entire frequency band, and the sound pressure level decreases with the increase of frequency. The sound pressure level energy is higher in the frequency band less than 1000 Hz, and the characteristic peak value can be observed at the blade frequency (241.7 Hz) and its frequency doubling. The total sound pressure level decreases first and then increase with the increase of flow rate.
2024,46(17): 27-33 收稿日期:2023-11-3
DOI:10.3404/j.issn.1672-7649.2024.17.005
分类号:TE97
基金项目:国家自然科学基金资助项目(52279087,51879122);泰州市重大科技成果转化项目(SCG202205);国家重点研发计划资助项目(2022YFB3207600);国家石油天然气管网集团有限公司科学研究与技术开发项目(CLZB202202)
作者简介:李华(1983-),男,硕士,高级工程师,研究方向为油气储运设备设施国产化、智能化等
参考文献:
[1] 蔡俊. 离心泵叶轮几何参数对能量、空化及噪声特性的影响[D]. 武汉: 华中科技大学, 2017.
[2] 余昊谦, 王洋, 韩亚文, 等. 旋涡自吸泵流致噪声模拟及降噪[J]. 排灌机械工程学报, 2019, 37(4): 302-306+351.
[3] 夏极, 柯兵. 离心泵入口管段对流噪声影响的试验研究[J]. 中国水运(下半月), 2023, 23(4): 51-53.
[4] 刘厚林, 李钰, 王凯, 等. 流体激励下多级离心泵辐射噪声特性研究[J]. 华中科技大学学报(自然科学版), 2017, 45(11): 92-97.
[5] 袁寿其, 薛菲, 袁建平, 等. 离心泵压力脉动对流动噪声影响的试验研究[J]. 排灌机械工程学报, 2009, 27(5): 287-290.
[6] 李倩, 梁宁, 童威棋, 等. 基于循环平稳分析的推进泵流致噪声特性研究[J]. 浙江大学学报(工学版), 2021, 55(9): 1660-1667.
[7] 郎涛, 孙振新, 金力成, 等. 单叶片离心泵空化诱导噪声特性分析[J]. 排灌机械工程学报, 2023, 41(9): 873–880.
[8] 王春林, 罗波, 夏勇, 等. 双吸离心泵正反转工况流致振动噪声研究[J]. 振动与冲击, 2017, 36(7): 248-254.
[9] 李仁年, 李瑾, 权辉, 等. 叶栅内压力脉动特性及其对流致噪声的影响[J]. 机械工程学报, 2019, 55(8): 225-232.
[10] 傅百恒. 旋流泵内流特性与流致噪声特征关联性的研究[D]. 兰州: 兰州理工大学, 2018.
[11] 吴江海, 何涛, 尹志勇. 基于FEM/BEM的船用水泵流动诱发振动噪声计算分析[J]. 舰船科学技术, 2016, 38(9): 49-55.
[12] 周翔, 代翠, 董亮, 等. 船用舱底水转子泵流体激振力数值计算[J]. 船舶工程, 2022, 44(S1): 346-351.
[13] DAI C, GUO C, GE Z, et al. Study on drag and noise reduction of bionic blade of centrifugal pump and mechanism[J]. Journal of Bionic Engineering, 2021, 18(2): 428-440.
[14] DAI C, GUO C, CHEN Y, et al. Analysis of the influence of different bionic structures on the noise reduction performance of the centrifugal pump[J]. Sensors, 2021, 21(3): 886-893.
[15] LI F, HUANG Q, SUN G, et al. Numerical simulation of the flow field and radiation noise from a pump-jet propulsor under various stator pre-whirl angles[J]. Applied Ocean Research, 2023, 135.
[16] 郭超. 基于仿生沟槽结构的离心泵减阻降噪特性研究[D]. 镇江: 江苏大学, 2022.
[17] 陈怡平. 基于仿生结构的离心泵降噪研究[D]. 镇江: 江苏大学, 2020.
[18] 代翠, 戈志鹏, 董亮, 等. 离心泵仿生表面减阻降噪特性研究[J]. 华中科技大学学报(自然科学版), 2020, 48(9): 113-118.
[19] 司乔瑞. 离心泵低噪声水力设计及动静干涉机理研究[D]. 镇江: 江苏大学, 2014.
[20] PROUDMAN I. The generation of noise by isotropic turbulence[J]. Proceedings of the Royal Society A, 1952, 214(1116): 119-132.
[21] SARKAR S, HUSSEINI M Y. Computation of the sound generated by isotropic turbulence[R]. ICASE Technical Report, 1993, 74-93.