针对水下航行体垂直发射过程中,发射系统高压腔与密封环围腔连通,导致高压气体涌入围腔内引发压力脉动这一问题。采用有限元仿真的方法对其进行分析,探究了高压腔内发射压力、围腔长度和航行体尾部倒角等因素对压力脉动的影响规律。仿真结果表明,高压气体进入围腔内撞击到第二道密封环后发生发射并回流,使整个发射系统受到逐渐衰弱的正弦周期性冲击。随着航行体的进一步运动压力脉动的幅值逐渐降低,整个压力脉动过程的最大峰值可达高压腔内发射压力的1.45倍;增加高压腔内发射压力,围腔内压力脉动峰值增加,峰值到达时间提前;增加围腔长度,压力脉动峰值增加,峰值到达时间延后;航行体尾部存在倒角时,围腔内压力脉动峰值到达时间提前。
During the vertical launch process of underwater vehicles, a problem that when the high-pressure chamber of the launch system is connected to the sealed annular cavity, causing high-pressure gas to surge into the cavity and generate pressure pulsations arises. In this study, the finite element simulation method was used to analyze this problem and investigate the effects of factors such as launch pressure in the high-pressure chamber, length of the annular cavity, and chamfer at the tail of the vehicle on pressure pulsations. The simulation results indicate that when high-pressure gas enters the annular cavity and impacts the second seal ring, it undergoes launch and back-flow, resulting in gradually weakening sinusoidal periodic impacts on the entire launch system. As the vehicle moves further, the amplitude of pressure pulsations gradually decreases, and the maximum peak value in the entire pressure pulsation process can reach 1.45 times the launch pressure in the high-pressure chamber. Increasing the launch pressure in the high-pressure chamber leads to an increase in the peak of pressure pulsations in the annular cavity and an earlier arrival time for the peak. Increasing the length of the annular cavity leads to an increase in the peak value of pressure pulsations and a delayed arrival time for the peak. When there is a chamfer at the tail of the vehicle, the arrival time of the peak of pressure pulsations in the annular cavity is advanced.
2024,46(17): 38-43 收稿日期:2023-11-14
DOI:10.3404/j.issn.1672-7649.2024.17.007
分类号:O355
作者简介:周志(1997-),男,硕士,研究方向为流体力学
参考文献:
[1] 孙东平, 范作娥. 潜射战术导弹垂直发射技术的发展及应用[J]. 飞航导弹, 2019(1): 79-81+86.
[2] 马溢清, 李欣. 潜射导弹水下垂直发射方式综述[J]. 战术导弹技术, 2010(3): 124-128.
[3] 刘永亮, 任克亮, 马旭轮, 等. 国外舰载导弹发射装置发展综述[J]. 装备环境工程, 2023, 20(7): 1-8.
[4] 徐悦, 张振鹏, 陈小庆. 舰载导弹垂直发射技术研究进展[J]. 导弹与航天运载技术, 2007(3): 22-25.
[5] 赵亚鹏, 陈延伟, 张旭耀. 深水炸弹垂直发射技术初探[J]. 数字海洋与水下攻防, 2018, 1(1): 81-84.
[6] 赵振军, 臧雨晴, 李强, 等. 弹性支撑模型对火箭发射过程结构振动响应影响研究[J]. 振动与冲击, 2022, 41(3): 268-277.
[7] 尚书聪, 孙建中, 秦丽萍. 潜载导弹水下发射出筒横向动力学特性研究[J]. 振动与冲击, 2012, 31(23): 82-86.
[8] 孙志欣, 刘汉涛, 李海桥. 宽域飞行器垂直发射状态下的振荡气动特性研究[J]. 空天技术, 2023(2): 20-27+57.
[9] 李卓越, 杜鹏, 汪超, 等. 水下垂直发射出筒过程数值模拟研究[J]. 水动力学研究与进展A辑, 2021, 36(6): 781-787.
[10] 李代金, 张宇文, 党建军, 等. 潜艇垂射导弹出筒姿态的研究[J]. 弹箭与制导学报, 2009, 29(4): 171-173+178.
[11] SHANG S C, SUN J Z. Research on the affection of the underwater missile launching process[J]. Applied Mechanics & Materials, 2012, 130-134: 2594-2599.
[12] LU Xiumei, HE Jie, LI Beibei, et al. Study on unsteady cavitation flow and pressure pulsation characteristics in the regulating valve[J]. Shock and Vibration, 2021, 1-10.
[13] 刘元清, 张晨星, 陈香言, 等. 水下航行器-发射筒间隙流动仿真[J]. 水下无人系统学报, 2022, 30(4): 450-456.
[14] 袁永润, 马国鹭, 陈万华, 等. 基于压力损失的轻气炮内弹道建模及仿真分析[J]. 火炮发射与控制学报, 2022, 43(6): 15-20.
[15] 杨林家, 方舒杨. 基于FLUENT的弯曲方管网格无关性验证[J]. 北部湾大学学报, 2023, 38(2): 63-69.