大型客船大跨度开孔梁在轴向和横向载荷的作用下,在开口边缘位置容易产生塑性铰失效模式,导致整体结构承载能力下降,需要针对开口梁结构进行相应的分析。考虑了开孔形状影响因素,对大跨度开孔梁进行了一系列的数值模拟以及实际试验。结果显示,节点结构非线性有限元数值仿真结果与试验结果一致,开孔尺寸的增大会导致更强的局部塑性铰破坏现象,在轴向和垂向载荷的联合作用下,轴向载荷对结构的极限承载作用较小,但会影响结构提前进入塑性阶段。同时,对开孔梁的挠度以及开孔形状与外载荷之间的关系进行分析,针对开孔梁的影响参数进行了相应的数值模拟分析,对大型客船大跨度开孔结构提供参考。
Large-span open beams of large passenger ships are susceptible to plastic hinge failure mode at the opening edges under axial and transverse loads, leading to a reduction in the overall structural load carrying capacity, which needs to be analyzed accordingly for the open beam structure. A series of numerical simulations as well as practical tests were carried out on the large-span open-ended beams, the factors affecting the shape of the openings. The analysis results show that the nonlinear finite element numerical simulation results of the nodal structure are consistent with the test results, and the increase in the size of the openings leads to a stronger localized plastic hinge damage phenomenon, and under the combined effect of axial and pendant loads, the axial loads have a smaller effect on the ultimate load carrying capacity of the structure, but affect the structure to enter into the plastic phase earlier. At the same time, the deflection of the open hole beam and the relationship between the shape of the open hole and the external load are analyzed, and the corresponding numerical simulation analysis is carried out for the influence parameters of the open hole beam, which will provide a reference for the large-span open hole structure of large passenger ships.
2024,46(17): 44-48 收稿日期:2023-11-7
DOI:10.3404/j.issn.1672-7649.2024.17.008
分类号:U633.6
作者简介:吕政达(1999-),男,硕士研究生,研究方向为船舶与海洋工程结构物设计及制造
参考文献:
[1] 黄昆, 万良平. 船体构件开孔及补强探讨[J]. 广东造船, 2013, 32(3): 45-47.
[2] 张隽华. 主要构件腹板开孔后强度特性研究[D]. 上海: 上海交通大学, 2012.
[3] 乔鹏远, 袁昱超, 薛鸿祥, 等. 基于空腹桁架理论的船体结构腹板开孔强度简化分析方法[J]. 舰船科学技术, 2020, 40(7): 31-35+55.
QIAO Pengyuan, YUAN Yuchao, XUE Hongxiang, et al. Research on simplified analysis method for web openings strength of hull structure based on vierendeel truss theory[J]. Ship Science and Technology, 2020, 40(7): 31-35+55.
[4] CHENG B, ZHAO J C. Strengthening of perforated plates under uniaxial compression buckling analysis[J]. Thin-Walled Structures, 2010(48): 905-914.
[5] LEPCHA K H, MARBANIANG A L, PATTON M L. Behaviour and design of lean duplex stainless steel (ldss) beams with web openings under pure bending[J]. International Journal of Steel Structures, 2020, 20(3): 1052-1068.
[6] CHEN C, ZHOU H, LV Z D, et al. Experimental and numerical investigation of the buckling behavior and strength of combined opening plate girders in passenger ships[J]. Metals, 2023, 13(7): 1256-1268.
[7] CHUNG K F. Recent advances in design of steel and composite beams with web openings[J]. Article, 2012, 15(9): 1521-1536.
[8] 王勋. 船体桁材开孔后的强度和稳定性研究[D]. 武汉: 武汉理工大学, 2009.
[9] 丁艳伟, 杨平. 船体桁材开孔后的强度研究[J]. 船海工程, 2011, 40(3): 63-65.
DING Yanwei, TANG Ping. Research on ultimate strength of ship girders with cutout[J]. Ship and Ocean Engineering, 2011, 40(3): 63-65.
[10] SAAD-ELDEEN S, GARBATOV Y. Experimental and numerical analysis of structural capacity of perforated stiffened Plates[J]. Journal of Marine Science and Engineering, 2023, 13(7): 1256-1276.
[11] SAAD-ELDEEN S, GARBATOV Y, GUEDES S. Structural capacity of plates and stiffened panels of different materials with opening[J]. Ocean Engineering, 2018, 167: 45-54.
[12] SHEN W, ZHAO Y J, LI L, et al. Assessment of residual ultimate strength on plate girders with web opening under compression-bending loadings[J]. Ocean Engineering, 2019, 187.
[13] ZHAO Y J, YAN R J, WANG H X. Experimental and numerical investigations on plate girders with perforated web under axial compression and bending moment[J]. Thin-Walled Structures, 2015, 97: 199-206.
[14] 邓长根, 徐忠根.缺陷结构稳定分析的一致缺陷模态近似法[C]//中国钢结构协会结构稳定与疲劳分会第13届(ISSF-2012)学术交流会暨教学研讨会论文集, 武汉: 《钢结构》编辑部, 2012: 8.
[15] ISO. 2015 Guidelines for the assessment of speed and power performance by analysis of speed trial data: ISO 15016-2015[S]. 2015.